Теорема гаусса в интегральной форме для вакуума. Теорема Гаусса для электростатического поля в вакууме

Электростатическое поле наглядно можно изобразить с помощью силовых линий (линий напряженности). Силовыми линиями называют кривые, касательные к которым в каждой точке совпадают с вектором напряженности Е .

Силовые линии являются условным понятием и реально не существуют. Силовые линии одиночного отрицательного и одиночного положительного зарядов изображены на рис. 5 - это радиальные прямые, выходящие от положительного заряда или идущие к отрицательному заряду.

Если густота и направление силовых линий по всему объему поля сохраняются неизменными, такое электростатическое поле считается однородным (выделение">число линий должно быть численно равно напряженности поля Е .

Число силовых линий пометка">dS, перпендикулярную к ним, определяет поток вектора напряженности электростатического поля:

формула" src="http://hi-edu.ru/e-books/xbook785/files/17-1.gif" border="0" align="absmiddle" alt=" - проекция вектора Е на направление нормали n к площадке dS (рис. 6 ).

Соответственно поток вектора Е сквозь произвольную замкнутую поверхность S

пометка">S не только величина, но и знак потока могут меняться:

1) при формула" src="http://hi-edu.ru/e-books/xbook785/files/17-4.gif" border="0" align="absmiddle" alt="

3) при выделение">Найдем поток вектора Е сквозь сферическую поверхность S, в центре которой находится точечный заряд q.

В этом случае пометка">Е и n во всех точках сферической поверхности совпадают.

С учетом напряженности поля точечного заряда формула" src="http://hi-edu.ru/e-books/xbook785/files/18-2.gif" border="0" align="absmiddle" alt=" получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=" - алгебраическая величина, зависящая от знака заряда. Например, при q <0 линии Е направлены к заряду и противоположны направлению внешней нормали n ..gif" border="0" align="absmiddle" alt=" вокруг заряда q имеет произвольную форму. Очевидно, что поверхность пометка">Е, что и поверхность S. Следовательно, поток вектора Е сквозь произвольную поверхность формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=".

Если заряд будет находиться вне замкнутой поверхности, то, очевидно, сколько линий войдет в замкнутую область, столько же из нее и выйдет. В результате поток вектора Е будет равен нулю.

Если электрическое поле создается системой точечных зарядов формула" src="http://hi-edu.ru/e-books/xbook785/files/18-4.gif" border="0" align="absmiddle" alt="

Эта формула является математическим выражением теоремы Гаусса: поток вектора напряженности Е электрического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме зарядов, которые она охватывает, деленной на формула" src="http://hi-edu.ru/e-books/xbook785/files/18-6.gif" border="0" align="absmiddle" alt="

Для полноты описания представим теорему Гаусса еще и в локальной форме, опираясь не на интегральные соотношения, а на параметры поля в данной точке пространства. Для этого удобно использовать дифференциальный оператор - дивергенцию вектора, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/nabla.gif" border="0" align="absmiddle" alt=" («набла») -

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-1.gif" border="0" align="absmiddle" alt="

В математическом анализе известна теорема Гаусса-Остроградского: поток вектора через замкнутую поверхность равен интегралу от его дивергенции по объему, ограниченному этой поверхностью, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/ro.gif" border="0" align="absmiddle" alt=":

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-4.gif" border="0" align="absmiddle" alt="

Это выражение и есть теорема Гаусса в локальной (дифференциальной) форме.

Теорема Гаусса (2.2) позволяет определять напряженности различных электростатических полей. Рассмотрим несколько примеров применения теоремы Гаусса.

1. Вычислим Е электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность радиуса R несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда всюду одинакова пометка">r >R от центра сферы мысленно построим новую сферическую поверхность S, симметричную заряженной сфере. В соответствии с теоремой Гаусса

формула" src="http://hi-edu.ru/e-books/xbook785/files/20-1.gif" border="0" align="absmiddle" alt="

Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии можно записать:

выделение">внутри заряженной сферы, не содержит внутри себя электрических зарядов, поэтому поток пометка">Е = 0.

Для полноценного описания электростатического поля заданной системы зарядов в вакууме достаточно экспериментально подтвержденного закона Кулона и принципа суперпозиции. Но при этом существует возможность свойства электростатического поля охарактеризовать в ином обобщенном виде, не опираясь на утверждения касательно кулоновского поля точечного заряда.

Зададим новую физическую величину, описывающую электрическое поле – поток Φ вектора напряженности электрического поля. Предположим, что в пространстве, содержащем заданное электрическое поле, имеется некая достаточно малая площадка Δ S .

Определение 1

Элементарный поток вектора напряженности (через площадку S) – это физическая величина, равная произведению модуля вектора E → , площади Δ S и косинуса угла α между вектором и нормалью к площадке:

Δ Φ = E Δ S cos α = E n Δ S.

В данной формуле E n является модулем нормальной составляющей поля E → .

Рисунок 1 . 3 . 1 . Иллюстрация элементарного потока Δ Φ .

Пример 1

Теперь возьмем для рассмотрения некую произвольную замкнутую поверхность S . Разобьем заданную поверхность на площадки небольшого размера Δ S i , рассчитаем элементарные потоки Δ Φ i поля через эти малые площадки, после чего найдем их сумму, что в итоге даст нам поток Φ вектора через замкнутую поверхность S (рис. 1 . 3 . 2):

Φ = ∑ ∆ Φ i = ∑ E m ∆ S i

Когда речь идет о поверхности замкнутого типа, всегда используется внешняя нормаль.

Рисунок 1 . 3 . 2 . Расчет потока Ф через произвольную замкнутую поверхность S .

Теорема или закон Гаусса для электростатического поля в вакууме является одним из основных электродинамических законов.

Теорема 1

Поток вектора напряженности электростатического поля E → через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0 .

Уравнение Гаусса имеет вид:

Φ = 1 ε 0 ∑ q в н у т р

Доказательство 1

Докажем указанную теорию: для этого исследуем сферическую поверхность (или поверхность шара) S . В центре заданной поверхности расположен точечный заряд q . Любая точка сферы обладает электрическим полем, перпендикулярным поверхности сферы и равным по модулю:

E = E n = 1 4 π ε 0 · q R 2 ,

где R является радиусом сферы.

Поток Φ через поверхность шара запишется, как произведение E и площади сферы 4 π R 2 . Тогда: Φ = 1 ε 0 q .

Следующим нашим шагом будет окружение точечного заряда произвольной поверхностью S замкнутого типа; зададим также вспомогательную сферу R 0 (рис. 1 . 3 . 3).

Рисунок 1 . 3 . 3 . Поток электрического поля точечного заряда через произвольную поверхность S , окружающую заряд.

Возьмем для рассмотрения конус с малым телесным углом Δ Ω при вершине. Рассматриваемый конус задаст на сфере малую площадку Δ S 0 , а на поверхности S – площадку Δ S . Элементарные потоки Δ Φ 0 и Δ Φ через эти площадки являются одинаковыми. В самом деле:

Δ Φ 0 = E 0 Δ S 0 , Δ Φ = E Δ S cos α = E Δ S " ,

где выражением Δ S " = Δ S cos α определяется площадка, которая задастся конусом с телесным углом Δ Ω на поверхности сферы радиуса n .

Поскольку ∆ S 0 ∆ S " = R 0 2 r 2 , то ∆ Φ 0 = ∆ Φ . Из полученного следует вывод о том, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Φ = Φ 0 = q ε 0 .

Так же мы можем продемонстрировать, что, когда замкнутая поверхность S не охватывает точечный заряд q , поток Φ равен нулю. Этот случай проиллюстрирован на рис. 1 . 3 . 2 . Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, т.е. в этой области не наблюдается обрыва или зарождения силовых линий.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов является следствием из принципа суперпозиции. Поле любого распределения зарядов возможно записать в виде векторной суммы электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S сложится из потоков Φ i электрических полей отдельных зарядов. Когда заряд q i расположен внутри поверхности S , он дает вклад в поток, равный q i ε 0 . В случае расположения заряда снаружи поверхности его вклад в поток есть нуль.

Так, мы доказали теорему Гаусса.

Замечание 1

Теорема Гаусса, по сути, есть следствие закона Кулона и принципа суперпозиции. Однако, взяв за изначальную аксиому утверждения теоремы, следствием станет закон Кулона, в связи с чем теорему Гаусса порой называют альтернативной формулировкой закона Кулона .

Опираясь на теорему Гаусса, в определенных случаях легко определить напряженность электрического поля вокруг заряженного тела (при наличии заранее угаданных симметрии заданного распределения зарядов и общей структуры поля).

Пример 2

В качестве примера можно рассмотреть задачу, в которой необходимо вычислить поле тонкостенного полого однородно заряженного длинного цилиндра с радиусом R . Такая задача имеет осевую симметрию, и из соображений симметрии электрическое поле должно иметь направление по радиусу. Таким образом, чтобы иметь возможность применить теорему Гаусса, оптимально выбрать поверхность замкнутого типа S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1 . 3 . 4).

Рисунок 1 . 3 . 4 . Иллюстрация поля однородно заряженного цилиндра. O O " – ось симметрии.

Если r ≥ R , то весь поток вектора напряженности пройдет через боковую поверхность цилиндра, поскольку поток через оба основания есть нуль. Формула площади боковой поверхности цилиндра запишется как: 2 π r l . Применим закон Гаусса и получим:

Φ = E 2 π r l = τ l ε 0 .

В указанном выражении τ является зарядом длины цилиндра. Далее можно записать:

E = τ 2 π ε 0 r .

Данное выражение не имеет зависимости от радиуса R заряженного цилиндра, а значит оно применимо и к полю длинной однородно заряженной нити.

Чтобы найти напряженность поля внутри заряженного цилиндра, необходимо создать замкнутую поверхность для случая r < R . В соответствии с симметрией задачи поток вектора напряженности через боковую поверхность цилиндра должен быть, и в этом случае он равен Φ = E 2 π r l . Исходя из гауссовской теоремы, этот поток находится в пропорции к заряду, расположенному внутри замкнутой поверхности. Заряд этот равен нулю, откуда вытекает, что электрическое поле внутри однородно заряженного длинного полого цилиндра тоже есть нуль.

Точно так же теорема и формула Гаусса применимы для определения электрического поля в иных случаях, когда распределение зарядов охарактеризовано какой-либо симметрией, к примеру, симметрией относительно центра, плоскости или оси. Во всех этих случаях необходимо выбирать замкнутую гауссову поверхность подходящей формы.

Пример 3

К примеру, в случае центральной симметрии поверхность оптимально выбрать в виде сферы, у которой центр расположен в точке симметрии. Когда мы имеем симметрию относительно оси, подходящим видом замкнутой поверхности будет соосный цилиндр, закрытый с обоих торцов (аналогично рассмотренному выше примеру).

При отсутствии симметрии и невозможности угадать общую структуру поля, теорема Гаусса не сможет быть применена для упрощения решения задачи по определению напряженности поля.

Пример 4

Разберем еще пример распределения зарядов при наличии симметрии: нахождение поля равномерно заряженной плоскости (рис. 1 . 3 . 5).

Рисунок 1 . 3 . 5 . Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность.

Здесь гауссову поверхность S оптимально задать как цилиндр некой длины, замкнутый с обоих концов. Ось цилиндра является перпендикуляром к заряженной плоскости; в свою очередь, торцы цилиндра находятся на одинаковом расстоянии от нее. В соответствии с симметрией поле равномерно заряженной плоскости должно везде иметь направление по нормали. Применим теорему Гаусса и получим:

2 E ∆ S = σ ∆ S ε 0 или E = σ 2 ε 0 .

Здесь σ является поверхностной плотностью заряда или зарядом, приходящимся на единицу площади.

Выражение, которое мы получили для электрического поля однородно заряженной плоскости, возможно использовать и для плоских заряженных площадок конечного размера: здесь расстояние от точки, в которой мы определяем напряженность поля, до заряженной площадки должно быть значимо меньше размеров площадки.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Черноуцан А. И. Силовые линии и теорема Гаусса //Квант. - 1990. - № 3. - С. 52-55.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Из школьного курса физики вы знаете, что наглядное представление об электрическом поле можно получить по картинке силовых линий (договоримся под «электрическим» полем здесь понимать электростатическое поле). Проводя касательную к силовой линии, мы узнаём направление вектора напряженности (стрелки на линиях укажут, куда именно направить этот вектор), сравнивая густоту силовых линий в разных местах (т. е. число силовых линий, проходящих через единичную площадку перпендикулярно к ней), выясняем, где и во сколько раз больше величина напряженности. Однако значение силовых линий этим не исчерпывается.

Хорошо знакомое вам свойство непрерывности линий в пустом пространстве отражает, на самом деле, важнейшее свойство электрического поля. Сформулируем его: электрическое поле устроено так, что можно проводить силовые линии, соблюдая правило густоты и не обрывая их при этом в пустом пространстве между зарядами; линии начинаются на положительных зарядах и заканчиваются на отрицательных; на каждом заряде начинается (или заканчивается) число линий, пропорциональное его величине.

Вы удивлены? Вам это свойство кажется очевидным, само собой разумеющимся? Это далеко не так. Будь закон Кулона чуть-чуть иным, и провести силовые линии непрерывно уже не удалось бы. Возьмем, к примеру, точечный заряд. По мере удаления от него густота силовых линий уменьшается. Так, при увеличении расстояния от заряда в 2 раза густота линий уменьшится в 4 раза (число линий не изменится, а площадь поверхности сферы увеличится в 4 раза). Во столько же раз уменьшится и напряженность электрического поля. Но только благодаря тому, что в законе Кулона стоит \(~\frac{1}{r^2}\)! Если бы, например, там было \(~\frac{1}{r^3}\), то напряженность уменьшилась бы не в 4, а в 8 раз, и для соблюдения правила густоты половину силовых линий пришлось бы оборвать на пути от r до 2r . И это в пустом пространстве!

Математически строгим выражением свойства непрерывности силовых линий электрического поля является теорема Гаусса. Для того чтобы сформулировать и доказать ее, нам надо сначала перейти от качественного языка силовых линий к точным количественным представлениям. Начнем с того, что несколько перефразируем свойство непрерывности линий.

Рассмотрим произвольную замкнутую поверхность. Если внутри поверхности зарядов нет, то число вышедших из нее линий в точности равно числу вошедших. Удобно входящие линии учитывать наряду с выходящими, но приписывать им знак «минус». Тогда можно сказать, что полное число выходящих из «пустой» поверхности силовых линий равно нулю. Если же внутри поверхности находится какой-нибудь заряд, то, очевидно, что полное число линий, выходящих из поверхности, будет пропорционально величине этого заряда . Это и есть качественная формулировка теоремы Гаусса. Но - пойдем дальше.

Введем скалярную величину Φ - ее называют потоком вектора напряженности через некоторую маленькую площадку:

\(~\Phi = ES \cos \alpha\) . (1)

Здесь \(~\vec E\) - напряженность поля в месте нахождения выбранной площадки (раз площадка маленькая, поле можно считать однородным), S - площадь площадки, α - угол между вектором \(~\vec E\) и вектором \(~\vec n\) нормали к площадке. Посмотрите на рисунок 1: число силовых линий, пронизывающих площадку S , равно произведению их густоты на площадь поперечной площадки \(~S_{\perp} = S \cos \alpha\). Так как густота линий пропорциональна Е , полное число силовых линий, проходящих через площадку, пропорционально потоку Φ . Всем силовым линиям, выходящим из некоторой замкнутой поверхности, соответствует поток через всю эту поверхность (т. е. сумма потоков через отдельные маленькие участки поверхности). Чтобы выходящие линии давали положительный вклад в поток, а входящие - отрицательный, договоримся, чтобы нормаль к поверхности всюду «смотрела» наружу.

Теперь понятно, что теорему Гаусса можно сформулировать так: поток вектора напряженности электрического поля через любую замкнутую поверхность пропорционален полному заряду, заключенному внутри этой поверхности . Чтобы доказать эту теорему, а заодно и вычислить коэффициент пропорциональности, рассмотрим сначала простое, но очень важное свойство величины Φ .

Запишем формулу (1) в виде \(~\Phi = (E \cos \alpha) S = E_n S\), где E n - проекция вектора \(~\vec E\) на направление нормали \(~\vec n\). Если поле создается несколькими зарядами, то по принципу суперпозиции \(~\vec E = \vec E_1 + \vec E_2 + \ldots + \vec E_k\). Но проекция суммы векторов равна сумме проекций: E n = E 1n + E 2n + … + E kn . Отсюда получаем, что полный поток вектора напряженности равен сумме потоков, создаваемых отдельными зарядами: Φ = Φ 1 + Φ 2 + … + Φ k . Поэтому можно говорить о вкладе в полный поток от каждого отдельного заряда.

Докажем вначале, что вклад в поток от точечного заряда q , находящегося вне замкнутой поверхности, равен нулю. Рассмотрим два маленьких участка поверхности, отсекаемых узким конусом (рис. 2). Имеем

\(~\begin{matrix} \Phi_1 = E_1 S_1 \cos \alpha_1 = -E_1 S_{1 \perp} \\ \Phi_2 = E_2 S_2 \cos \alpha_2 = E_2 S_{2 \perp} \end{matrix}\) ,

где \(~E_1 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2_1}\) , \(~E_2 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2_2}\) .

Из подобия следует, что

\(~\frac{r^2_1}{r^2_2} = \frac{S_{1 \perp}}{S_{2 \perp}}\) .

Таким образом,

\(~\Phi_1 = -\Phi_2\) , или \(~\Phi_1 + \Phi_2 = 0\).

Аналогичное взаимное уничтожение потоков происходит и для любой другой пары соответствующих участков.

Вычислим теперь вклад в поток от точечного заряда, находящегося внутри замкнутой поверхности. Окружим заряд сферической поверхностью радиусом r (рис. 3). Рассуждая аналогично предыдущему, получим, что в этом случае Φ 1 = Φ 2 , т. е. что поток через рассматриваемую произвольную поверхность равен потоку через сферу. А поток через сферу вычислить легко:

\(~\Phi = ES = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2} 4 \pi r^2 = \frac{q}{\varepsilon_0}\) .

Таким образом, мы пришли к окончательной формулировке теоремы Гаусса: поток вектора напряженности электрического поля через произвольную замкнутую поверхность равен полному заряду, заключенному внутри этой поверхности, деленному на электрическую постоянную, т. е.

\(~\Phi = \frac{\sum q_{vnutr}}{\varepsilon_0}\) . (2)

Перейдем теперь к самому приятному - начнем пожинать плоды. Первое применение теоремы Гаусса - это вычисление напряженности электрического поля. Сразу оговоримся, что круг задач, решаемых таким способом, не очень широк (в отличие от способа, основанного на использовании принципа суперпозиции). Но все же он существует. Если мы, например, заранее знаем направление вектора напряженности во всех интересующих нас точках пространства, если удалось выбрать замкнутую поверхность, для которой вычисление потока вектора напряженности является простым, то тогда, может быть, нас ждет успех. Но зато какой успех!

Как известно, много лет потребовалось Ньютону, чтобы доказать, что сила притяжения материальной частицы к шару (Земле) не изменится, если всю массу шара сконцентрировать в его центре. Для проведения доказательства с помощью принципа суперпозиции ему пришлось существенно развить интегральное исчисление. А теперь смотрите, как мы просто справимся с практически такой же задачей. Возьмем шар, равномерно заряженный зарядом Q , и вычислим поле вне его - на расстоянии r от его центра (рис. 4). Из соображений симметрии ясно, что вектор напряженности поля \(~\vec E\) всюду направлен по радиусу. Выразим поток вектора напряженности через сферу радиусом r двумя способами. По определению потока

\(~\Phi = ES = 4 \pi E r^2\) ,

а по теореме Гаусса

\(~\Phi = \frac{Q}{\varepsilon_0}\) .

Отсюда получаем

\(~E = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r^2}\)

Поле заряженного шара вне его совпадает с полем точечного заряда, помещенного в центр шара.

Другой пример: найдем напряженность поля бесконечной заряженной плоскости с поверхностной плотностью заряда σ (рис. 5). Из симметрии понятно, что вектор \(~\vec E\) всюду перпендикулярен плоскости. Выберем замкнутую поверхность в виде цилиндра, расположенного симметрично относительно плоскости. Поток вектора напряженности через боковую поверхность цилиндра равен нулю, а через каждое основание площадью S он равен ES , т. е.

\(~\Phi = 2 ES\) .

Но по теореме Гаусса

\(~\Phi = \frac{\sigma S}{\varepsilon_0}\) .

Приравнивая правые части обоих равенств, получаем

\(~E = \frac{\sigma}{2 \varepsilon_0}\) .

Наконец, последний пример. Он касается одного очень важного свойства проводников. Покажем, что статические заряды проводника всегда располагаются на его поверхности. Доказательство очень простое. Раз напряженность поля внутри проводника равна нулю (иначе возникло бы движение свободных зарядов), то поток вектора напряженности через любую замкнутую поверхность, проведенную внутри проводника, равен нулю. А это означает, что равен нулю и заряд внутри любой сколь угодно малой поверхности в толще проводника. Следовательно, все заряды проводника действительно располагаются на его поверхности.

А теперь - важное замечание. Доказательство электронейтральности объема проводника опирается на теорему Гаусса, которая, как и свойство непрерывности силовых линий, верна только в том случае, если в законе Кулона стоит \(~\frac{1}{r^2}\). Вывод: справедливость закона Кулона можно проверить экспериментально. Для этого достаточно убедиться в электронейтральности толщи проводника.

Вот видите, как много интересного может рассказать лишь одна теорема - теорема Гаусса.

Строгий вывод теоремы Остроградского – Гаусса довольно сложен, мы сделаем ее вывод для частного случая, который достаточно убедительно поддается обобщению. Теорема Остроградского – Гаусса позволяет определить поток вектора напряженности от любого количества зарядов. Для начала определим поток вектора напряженности через шаровую поверхность, в центре которой будет располагаться точечный заряд.

Отсюда следует, что из каждого точечного заряда выходит поток вектора напряженности, который равен значению q/εε 0 . Из обобщения данного положения выводится теорема Остроградского – Гаусса для общего случая – полный поток вектора напряженности через замкнутую произвольной формы поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности, поделенной на абсолютную диэлектрическую проницаемость ε а = εε 0 , то есть:

Где: n – количество зарядов, q i – заряд, заточенный внутри поверхности.

В системе Гаусса данное уравнения будет иметь вид:

Для потока вектора электрического смещения N D (вектора индукции) можно получить аналогичную формулу:

То есть, поток индукции через замкнутую произвольную поверхность равен алгебраической сумме электрических зарядов, которые охватываются этой поверхностью.

Если взять какую-то замкнутую поверхность, которая не охватывает заряд q, то каждая линия напряженности (или индукции) будет пересекать ее дважды – один раз она войдет в поверхность, а другой раз выйдет из нее. Из – за этого явления алгебраическая сумма линий индукции, проходящих через замкнутую поверхность, количество которых определяет полный поток индукции N D через эту поверхность будет равна нулю (N D = 0).

Прежде чем рассмотреть несколько частных случаев применения теоремы Остроградского – Гаусса для определения напряженностей различных электростатических полей, введем понятие о плотности зарядов.

– это физическая величина, которая характеризует распределение заряда вдоль линии (нити) или тонкого цилиндрического тела и численно равная отношению заряда к длине элемента нити:

А при равномерном распределении заряда по всей длине линейная плотность:

В СИ единицей измерения линейной плотности заряда τ будет 1 Кл/м.

Если заряд dq распределен по какому-то объему dV, то очевидно, что объемная плотность заряда будет численно равна соотношению заряда к элементу объема:

А при равномерном распределении заряда:

В системе СИ измеряется в 1 Кл/м 3 .

В случаях, когда заряд dq распределяется по поверхности dS и глубина его проникновения пренебрежительно мала, то поверхностная плотность заряда будет определена соотношением:

А в случае если заряд q по площади S распределен равномерно, то:

В системе СИ поверхностная плотность измеряется в Кл/м 2 .

Давайте вычислим , которое создано равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность имеет радиус R и равномерно распределенный заряд q, то есть поверхностная плотность σ в любой точке сферы будет одинакова.

Выберем точку А, которая находится от центра сферы на расстоянии r (рисунок ниже):

Через точку А мысленно проведем новую сферическую поверхность S, симметричную заряженной сфере.

В данном случае через поверхность S поток вектора напряженности будет равен:

По теореме Гаусса N E = q/εε 0 . Отсюда следует, что при r>R:

Если сравнить данное соотношение с формулой напряженности поля точечного заряда, можно сделать вывод, что вне заряженной сферы напряженность поля такова, как если бы весь имеющийся заряд сферы был сосредоточен в ее центре.

Для точек, которые находятся на поверхности заряженной сферы с имеющимся радиусом R, по аналогии с уравнением (7) можно записать:

Если провести через точку В, которая находится внутри сферической заряженной поверхности, сферу S / с радиусом r /

Теперь давайте попытаемся определить напряженность поля, созданного равномерно заряженной нитью (цилиндром) бесконечной длины .

Предположим, что полая цилиндрическая поверхность с определенным радиусом R заряжена с постоянной поверхностной плотностью σ. Проведем коаксильную поверхность цилиндрического типа с радиусом r>R.

Через эту поверхность поток вектора напряженности будет равен:

По теореме Гаусса:

Приравняв правые части этих уравнений получим:

Из формулы (4а) находим, что линейная плотность заряда цилиндра равна:

Использовав это равенство, найдем:

Теперь давайте определим напряженность поля, которое создается равномерно заряженной бесконечной плоскостью.

Если предположить, что данная плоскость имеет бесконечную протяженность и заряд на единицу плоскости равен σ. Из законов симметрии следует вывод, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то одинаковыми по своей величине должны быть поля по обе стороны плоскости.

Если ограничить часть заряженной плоскости 1 воображаемым прямоугольным ящиком 2 (Гауссова поверхность) таким образом, чтобы ящик был рассечен пополам (рисунок ниже).

Обе грани ящика, которые имеют определенную площадь S, должны быть расположены параллельно заряженной плоскости. Вектору Е равен суммарный поток вектора напряженности, умноженному на площадь первой грани S, плюс поток вектора Е через противоположную грань. Через остальные грани поток напряженности будет равен нулю, так как их не пересекают линии напряженности.

Повторив предыдущие рассуждения и применив теорему Остроградского – Гаусса, получим следующее выражение:

Но Е = Е 1 = Е 2 . В таком случае напряженность поля бесконечной равномерной плоскости будет равна:

Координаты точки, в которой определяется напряженность поля, не входят в формулу (12). Отсюда следует вывод, что в бесконечной равномерно заряженной плоскости электростатическое поле будет однородным, а его напряженность в любой точке поля одинакова.

И, наконец, давайте определим напряженность поля, которое создается двумя бесконечными параллельными плоскостями, с одинаковыми плотностями и разноизменно заряженными.

Из рисунка выше видно, что между двумя бесконечными параллельными плоскостями, имеющими поверхностные плотности зарядов –σ и +σ, напряженность поля равна сумме напряженностей полей, которые создаются обеими пластинами, то есть:

Векторы Е вне пластин направлены противоположно друг другу и взаимно уничтожаются. Поэтому напряженность электрического поля в пространстве, которое окружает пластины, будет равно нулю (Е = 0).

Общая формулировка: Поток вектора напряжённости электрического поля через любую, произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

В системе СГСЭ:

В системе СИ:

— поток вектора напряженности электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объеме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса соответствует одному из уравнений Максвелла и выражается следующим образом

в системе СИ:

в системе СГСЭ:

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Для теоремы Гаусса справедлив принцип суперпозиции, то есть поток вектора напряжённости через поверхность не зависит от распределения заряда внутри поверхности.

Физической основой теоремы Гаусса является закон Кулона или, иначе, теорема Гаусса является интегральной формулировкой закона Кулона.

Теорема Гаусса для электрической индукции (электрическое смещение).

Для поля в веществе электростатическая теорема Гаусса может быть записана иначе — через поток вектора электрического смещения (электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

Если же рассматривать теорему для напряжённости поля в веществе, то в качестве заряда Q необходимо брать сумму свободного заряда, находящегося внутри поверхности и поляризационного (индуцированного, связанного) заряда диэлектрика:

где ,
— вектор поляризации диэлектрика.

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

Применение теоремы Гаусса

Для вычисления электромагнитных полей используются следующие величины:

Объёмная плотность заряда (см. выше).

Поверхностная плотность заряда

где dS — бесконечно малый участок поверхности.

Линейная плотность заряда

где dl — длина бесконечно малого отрезка.

Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии . Поток вектора напряжённости равен . Применив теорему Гаусса, получим:


из которого

в системе СГСЭ

Важно отметить, что несмотря на свою универсальность и общность, теорема Гаусса в интегральной форме имеет сравнительно ограниченное применение в силу неудобства вычисления интеграла. Однако в случае симметричной задачи решение её становится гораздо более простым, чем с использованием принципа суперпозиции.

ВАЗ-2109