Технология диагностирования эффективности рулевого управления. Основные неисправности и диагностирование рулевого управления

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные неисправности и диагностирование рулевого управления

гидроусилитель рулевое колесо управление автомобиль

Основные неисправности. Неисправности рулевого управления создают угрозу безопасности движения и затрудняют управление автомобилем. Основными признаками неисправностей рулевого Управления являются увеличенный свободный ход рулевого колеса, тугое вращение или заедание в рулевом механизме, стуки и Нарушение герметичности, недостаточное или неравномерное Усиление и др.

Увеличенный свободный ход рулевого колеса появляется при износе шарниров рулевых тяг, нарушении регулировки червяка с роликом, износе подшипников червяка ослаблении крепления картера рулевого механизма, увеличении зазоров в подшипниках ступиц передних колес и шкворней. Указанные неисправности устраняют выполнением регулировочных работ, заменой или ремонтом изношенных деталей.

Тугое вращение или заедание в рулевом механизме обусловлено неправильной регулировкой, зацепления в редукторе рулевого механизма, погнутостью тяг, недостаточной смазкой в картере редуктора. Устраняют эти неисправности регулировкой, ремонтом тяг, пополнением масла в редукторе рулевого механизма до необходимого уровня. Нарушение герметичности в рулевом механизме устраняют заменой прокладок и подтяжкой креплений и соединений.

Недостаточное или неравномерное усиление в рулевом механизме с гидроусилителем может быть из-за слабого натяжения ремня привода насоса, снижения уровня масла в бачке, попадания воздуха в систему, заедания золотника или перепускного клапана при загрязнении. После выявления причин неисправностей их устраняют регулировкой натяжения ремня привода, доливкой масла до заданного уровня, промывкой системы и заменой масла, ремонтом насоса, гидроусилителя или клапана управления. Все работы по определению причин неисправностей рулевого управления выполняют при проведении диагностирования и технического обслуживания, а устранение неисправностей производят при ТР.

Диагностирование рулевого управления. Оно позволяет без разборки его узлов оценивать состояние рулевого механизма и рулевого привода; включает работы по определению свободного хода рулевого колеса, общей силы трения, люфта в шарнирах рулевых тяг.

Свободный ход рулевого колеса и силу трения определяют универсальным прибором модели НИИАТ К-402 (рис. 29.1). Прибор состоит из люфтометра и двухшкального динамометра. Люфтомер состоит из шкалы 3, закрепленной на динамометре, и указательной стрелки 2, которая жестко закреплена на рулевой колонке зажимами 7. Динамометр зажимами Скрепят к ободу рулевого колеса. Шкалы динамометра расположены на рукоятках 5 и обеспечивают отсчет прикладываемого к рулевому колесу усилия в диапазонах до 20 Н и от 20 до 120 Н.

Рис. 29.1. Прибор для диагностирования

При замере люфта рулевого колеса через рукоятку 5 прикладывают усилие 10 Н, сначала действующее вправо, а затем влево. Перемещение стрелки 2 из нулевого положения в левое и правое крайние положения укажет в сумме люфт колеса. Для автомобилей, имеющих поперечную неразрезную тягу, в момент замера необходимо вывесить левое переднее колесо. У автомобилей с гидроусилителем люфт определяют при работающем двигателе (на малых оборотах).

Общую силу трения в рулевом управлении проверяют при полностью вывешенных передних колесах приложением усилия к рукояткам 5 динамометра. Замеры выполняют при прямолинейном положении колес и в положениях максимального поворота их вправо и влево. В правильно отрегулированном рулевом механизме рулевое колесо должно свободно поворачиваться от среднего положения для движения по прямой при усилии 8--16 Н. Оценку состояния шарниров рулевых тяг проводят визуально или на ощупь в момент резкого приложения усилия к рулевому колесу. При этом люфт в шарнирах будет проявляться взаимным относительным перемещением соединенных деталей.

Проверка усилителя рулевого управления сводится к измерению (рис. 29.2) давления в системе гидроусилителя. Для этого в нагнетательную магистраль устанавливают Манометр 2 с краном 3. Доливают в бачок 1 масло до требуемого Уровня, пускают двигатель на малых оборотах и, открыв полностью Кран 3, поворачивают колеса в крайние положения. При этом Давление, развиваемое насосом, должно составлять не менее 6 МПа. Если давление меньше указанного значения, медленно закрывают Кран, наблюдая по манометру за увеличением давления, которое Должно подняться до 6,5 МПа. Если давление не увеличивается, то это свидетельствует о неисправности насоса. Неисправный насос снимают с автомобиля и ремонтируют.

Рис. 29.2. Измерение давления в системе рулевого управления гидроусилителя рулевого управления.

Регулировочные работы по рулевому управлению.

Рулевые механизмы типа червяк--ролик, винт--гайка рейка -- зубчатый сектор имеют две регулировки: осевого зазора в подшипниках вала винта и в зацеплении. Состояние рулевого механизма считается нормальным, если люфт рулевого колеса при движении по прямой не превышает 10°. При отклонении люфта в сторону увеличения необходимо прежде всего проверить зазор в подшипниках червяка (вала винта). Для этого резко поворачивают рулевое колесо в обе стороны и пальцем прощупывают осевое перемещение колеса относительно рулевой колонки. При наличии большого зазора в подшипниках осевой люфт будет легко ощущаться.

Для регулировки и устранения осевого люфта в подшипниках вала отворачивают болты и снимают нижнюю крышку 1 картера 2 рулевого механизма (рис. 29.3, а). Из-под крышки удаляют одну регулировочную прокладку 3, после чего собирают механизм и вторично проверяют осевой люфт. Если регулировка окажется недостаточной, то все операции повторяют вновь до получения нужного результата. После регулировки натяга в подшипниках проверяют усилие на ободе рулевого колеса, отсоединив сошку от тяги рулевого привода. Усиление на поворот руля должно составлять 3 -- 6 Н.

Рис. 29.3. Регулировка осевого зазора (а) и зацепления червяка с роликом (б) в рулевом механизме.

Зацепление червяка с роликом (рис. 29.3, б) регулируют без снятия рулевого механизма с автомобиля. Для регулировки отвертывают гайку 3 и, сняв шайбу 2 с штифта, специальным ключом поворачивают регулировочный винт 1 на несколько вырезов в стопорной шайбе. При этом изменяется боковой зазор в зацеплении гребней ролика и нарезки червяка, что изменяет свободный ход рулевого колеса. После регулировки гайку устанавливают на место.

Рис. 29.4.Проверка (а) и регулировка (б) люфта в сочленениях рулевого привода.

Люфт в сочленениях рулевого привода определяют резко покачивая сошку руля при поворотах рулевого колеса, охватив руками проверяемое сочленение (рис. 29.4, а). При этом повышенный люфт легко ощущается и, чтобы его устранить, подтягивают резьбовую пробку (рис. 29.4, б) в следующем порядке: вначале расшплинтовывают пробку, затем специальным ключом завертывают пробку до отказа и, отпустив на одну прорезь до совпадения с отверстием в головке тяги, шплинтуют.

Во время регулировки осевого люфта добавляют смазку в сочленения. При большом износе, если не удается таким образом устранить люфт, заменяют шаровой палец сочленения или всю тягу в сборе. Неразборные шарниры рулевого привода на легковых автомобилях регулировке не подлежат, поэтому при износе и возникновении люфта их заменяют.

Размещено на Allbest.ru

Подобные документы

    Технологический процесс ремонта рулевого управления автомобиля ВАЗ 2104. Увеличенный свободный ход рулевого колеса. Измеритель суммарного люфта рулевого управления. Стенд развал-схождение, его тестирование. Оборудование и инструмент для ремонта.

    дипломная работа , добавлен 25.12.2014

    История развития технологий управления автомобилем. Преимущества активного способа рулевого управления. Увеличенный люфт рулевого колеса, причины появления и устранения неисправности. Последствия неправильной регулировки зацепления в передающей паре.

    презентация , добавлен 23.12.2015

    Этапы развития рулевого колеса, его эволюционные типы: "Банджо", отводное, отклоняемый руль, регулируемая колонка. Кнопки на рулевом колесе и их функциональное назначение. Безопасность автомобиля и современные тенденции в развитии рулевого колеса.

    реферат , добавлен 30.10.2013

    Обзор основных метрологических характеристик рулевого управления автомобиля и описание методов его диагностирования. Эргономические и технические требования к рулевому управлению. Аварийная система для систем с силовым приводом. Испытательные коридоры.

    курсовая работа , добавлен 22.07.2011

    Анализ конструкции рулевого управления автомобиля ЗИЛ-431410. Исследование устройства и назначения рулевого механизма. Обзор характерных неисправностей рулевого управления, их признаков, основных причин и способов устранения. Разработка маршрутной карты.

    курсовая работа , добавлен 16.03.2014

    Назначение и общая характеристика рулевого управления автомобиля КамАЗ–5320 и колесного трактора МТЗ–80 с гидроусилителем. Основные регулировки рулевого управления. Возможные неисправности и техническое обслуживание. Насос гидравлического усилителя.

    контрольная работа , добавлен 29.01.2011

    Организация и оборудование рабочего места по техническому обслуживанию рулевого управления с гидроусилителем. Принцип работы гидроусилителя руля, его устройство и рекомендации по эксплуатации. Возможные неисправности и методы устранения, проверки.

    курсовая работа , добавлен 22.12.2013

    Требования, предъявляемые к механизмам рулевого управления. Классификация рулевого управления. Рулевой механизм червячного типа. Определение передаточного числа главной передачи. Тяговый баланс автомобиля. Динамическая характеристика автомобиля.

    курсовая работа , добавлен 19.11.2013

    Разработка технологического процесса технического обслуживания восстановления рулевого управления автомобиля ГАЗ. Корректировка норм технического обслуживания. Экономическая эффективность восстановления рулевого управления. Расчет годового пробега парка.

    дипломная работа , добавлен 19.03.2012

    Устройство гидравлического привода рулевого управления Honda CRV, его неисправности и способы их устранения. Операции технического обслуживания и текущего ремонта гидравлического привода. Изменение технического состояния в процессе эксплуатации.

Техническое состояние рулевого управления оказывает существенное влияние на безопасность дорожного движения и технико-экономические показатели эксплуатации автомобиля. В систему рулевого управления входят рулевой механизм и рулевой привод.

Рулевое управление классифицируется на механическое и гидравлическое, с гидроусилителем и без гидроусилителя. Наиболее распространено механическое рулевое управление с гидроусилителем и без гидроусилителя. средство техническое диагностирование автомобиль

Схемы различных рулевых управлений представляют механическую (гидромеханическую) или другую систему, состоящую из связанных между собой сопряженных пар трения, пружин, тяг и других деталей. Ухудшение технического состояния рулевого управления определяется износом, ослаблением крепления и деформацией деталей.

К числу основных параметров оценки технического состояния рулевого управления относят суммарный люфт (свободный ход) в рулевом управлении, усилие проворачивания рулевого колеса, а также люфт в отдельных сопряжениях для локализации неисправностей.

На определяемый суммарный люфт существенное влияние оказывает режим измерения, например, положения передних колес автомобиля (табл. 2.15).

Таблица 2.15. Значения суммарного люфта в рулевом управлении

Из табл. 2.15 видно, что суммарный люфт больше у автомобилей с вывешенным левым колесом. Поэтому испытания целесообразно проводить при вывешенном левом колесе или при установке колес на поворотные площадки.

Для диагностирования рулевого управления автомобилей рекомендовался ранее прибор К-187 (рис. 2.48), Он представляет собой динамометр-люфтомер. Динамометр (механического типа) закрепляют на ободе рулевого колеса, а стрелку люфтомера - на рулевой колонке. Шкала люфтомера выполнена на корпусе динамометра. Динамометр состоит из основания (скобы) с осью, свободно скользящих по оси барабанов 3 и 7 с кольцевыми буртиками, и соединительной втулки, двух пружин и двух пружинных захватов с зубчатым сектором и штангами.


Рис. 2.48. Прибор К-187 для диагностирования рулевого управления автомобиля: 1 - шкала люфтомера, 2 - соединительная вилка, 3 - стрелка, 4 - кронштейн, 5 - захват

Шкала динамометра нанесена на цилиндрической поверхности барабана. Она состоит из двух зон с различной ценой деления: для измерения малых сил до 0,02 кН и для измерения больших сил - более 0,02 кН,

Чтобы предохранить пружины (особенно для измерения малых сил) от перегрузок, могущих вызвать остаточную деформацию и нарушение тарировки динамометра, сжатие пружин ограничивают.

Люфтомер состоит из шкалы, шарнирно соединенной с кронштейнами динамометра, и стрелки, закрепленной на рулевой колонке.

Прибор обеспечивает измерение сил в диапазонах 0-0,2 и 0,2-0,8 кН и измерение люфта в диапазоне 10-0-10 град. Масса прибора 0,6 кг.

Большой интерес представляет электронное устройство для контроля усилий и люфта рулевого управления автомобиля (рис. 2.49).


Рис. 2.49. Блок-схема электронного устройства для контроля усилий и люфта рулевого управления

Выход датчика 2 микроперемещений подключен к входу порогового усилителя 6, выход которого соединен с входом управляющего ключа 10. Один из выходов ключа 10 подключен к индикатору "Измерение" 16, другой - к входу сброса счетчика импульсов 12, третий - к одному из входов цифрового индикатора 15, четвертый - к управляющему входу логического элемента И 8, информационный вход которого через нормирующий усилитель 4 подключен к датчику 1 угловых перемещений. Пятый выход управляющего ключа 10 подключен к управляющему входу логического элемента И 9, информационный вход которого соединен с выходом преобразователя "аналог - частота" 7. Вход преобразователя "аналог - частота" подключен к выходу нормирующего усилителя 5, вход которого соединен с датчиком 3 усилий.

Выходы логических элементов И 8 и 9 соединены с входами логического элемента ИЛИ 11, выход которого подключен к счетному входу счетчика импульсов 12. К выходу счетчика импульсов подключены информационный вход цифрового индикатора 15 и один из входов компаратора 13. С другим входом компаратора соединен датчик 14 эталонных сигналов, а к выходу компаратора подключен индикатор "Превышение" 17.

В качестве датчика 3 усилия можно использовать тензо- или пьезодатчик микроперемещений, имеющий на выходе электрический сигнал. Этот датчик установлен на корпусе 2 (рис. 2.50), закрепляемом на рулевом колесе с помощью самоцентрирующего захвата 1. С корпусом 2 шарнирно связана поворачиваемая относительно него вокруг оси рулевого колеса штанга 7, взаимодействующая с датчиком усилий 8. Сверху корпус 2 закрыт прозрачным диском 3, имеющим радиальные светоотражающие штрихи 4.


Рис. 2.50. Схема самоцентрирующегося устройства для установки на рулевое колесо автомобиля

Датчик 1 (см. рис. 2.49) углового перемещения рулевого колеса выполнен светооптическим. Он установлен параллельно диску 3 на гибкой штанге 5 (см. рис. 2.50), которую, например, с помощью присоски крепят к ветровому стеклу или к панели приборов.

Датчик 2 (см. рис. 2.49) микроперемещен

ий соединен с управляемым колесом автомобиля. Он может быть прикреплен, например, к внешней стороне колеса.

Датчик угловых перемещений 1, нормирующий усилитель 4, датчик микроперемещений 2, пороговый усилитель 6, управляющий ключ 10, логический элемент И 8, логический элемент ИЛИ 11, счетчик импульсов 12, цифровой индикатор 15 и индикатор "Измерение" 16 образуют цепь измерения люфта. Датчик усилий 3, нормирующий усилитель 5, преобразователь "аналог - частота" 7, датчик микроперемещений 2, пороговый усилитель б, управляющий ключ 10, логический элемент ИЛИ 11, счетчик импульсов 12, цифровой индикатор 15 образуют цепь измерения усилий. Датчик 14 эталонных сигналов, счетчик 12 импульсов, компаратор 13 и индикатор "Превышение" образуют цепь задавания и сравнения нормативов диагностических параметров.

Ключ 10 вырабатывает импульсы, управляющие логическими элементами И 8 и 9, включая и выключая измерительные цепи в зависимости от диагностируемого параметра (люфта или усилия). Кроме того, управляющий ключ 10 вырабатывает управляющие сигналы для индикатора "Измерение" 16, счетчика импульсов 12 и цифрового индикатора 15. Управление подачей сигналов от ключа 10 производят с помощью его переключателя, имеющего три положения: первые два соответствуют режиму измерения усилия на рулевом колесе при выборе люфта; третье - режиму измерения усилия на рулевом колесе при повороте управляемых колес.

Предпочтительное положение рулевого колеса при контроле соответствует движению автомобиля по прямой. Вращение рулевого колеса осуществляют за силоизмерительную штангу устройства, прикладывая усилие в направлении, перпендикулярном оси штанги в плоскости рулевого колеса.

При первом положении переключателя блока управления происходит обнуление счетчика 12, цифрового индикатора 15 и выключение индикатора "Измерение" 16. В этом режиме с началом поворота рулевого колеса из исходного положения в любую сторону начинает выбираться люфт, при этом управляющий ключ 10 дает разрешающий сигнал на вход логического элемента И 9, а сигнал с датчика усилий 3 через нормирующий усилитель 5, преобразователь "аналог - частота" 7, логический элемент И 9 и логический элемент ИЛИ 11 поступает на счетчик импульсов 12. После отработки этого сигнала управляющий ключ 10 подает разрешающий сигнал на цифровой индикатор 15, на котором выдается значение усилия на рулевом колесе при выборе люфта.

Измеренное значение усилия с выхода счетчика импульсов 12 подается (одновременно с поступлением на цифровой индикатор 15) на вход компаратора 13, в котором сравнивается с нормативным (предельным или допустимым) значением, поступающим с выхода датчика эталонных сигналов 14. В случае превышения заданного значения с выхода компаратора 13 на индикатор "Превышение" 17 подается соответствующий сигнал.

Когда люфт в этом режиме измерения полностью выбран, управляемые колеса начинают поворачивать, воздействуя на датчик микроперемещений 2, сигнал с которого поступает на пороговый усилитель 6.

При достижении порогового значения перемещения, определяемого пороговым усилителем, запрещающий выходной сигнал с последнего через управляющий ключ 10 поступает на управляющий вход логического элемента И 9, после чего включается цепь измерения люфта.

Одновременно происходит обнуление счетчика импульсов 12 и через заданный промежуток времени - цифрового индикатора 15.

Обнуление индикатора указывает на полный выбор люфта в направлении вращения рулевого колеса.

После этого переключатель управляющего ключа переводят во второе положение и начинают вращать рулевое колесо в обратном направлении. Когда рулевое колесо возвратится в начальное состояние измерения люфта, прекращается воздействие колес на датчик микроперемещений 2. Последний через пороговый усилитель 6 подает сигнал на управляющий ключ 10, который формирует разрешающий сигнал для логического элемента И 8. В результате импульсы с датчика угловых перемещений 1 через нормирующий усилитель 4, открытый логический элемент И 8 и логический элемент ИЛИ 11 поступают на счетчик импульсов 12, где происходит счет импульсов, отражающих люфт. После выбора люфта вновь срабатывает датчик микроперемещений 2 и на выходе порогового усилителя 6 и соответственно на выходе управляющего ключа 10 появляется запрещающий сигнал для логического элемента И 8, выключающий индикатор "Измерение" 16, и разрешающий сигнал на цифровом индикаторе 15. Последний при этом выдает значение измеренного люфта.

Измеренное значение люфта с выхода счетчика импульсов 12 одновременно поступает на цифровой индикатор 15 и на вход компаратора 13, в котором сравнивается с нормативным значением, поступающим с выхода датчика эталонных сигналов 14. В случае превышения заданного значения с выхода компаратора 13 на индикатор "Превышение" 17 подается соответствующий сигнал.

Для измерения усилия на рулевом колесе при повороте управляемых колес переключатель управляющего ключа устанавливается в третье положение.

Когда по окончании выбора люфта срабатывает датчик микроперемещений 2, то по его сигналу через пороговый усилитель 6 управляющий ключ 10 дает разрешающий сигнал на вход логического элемента И 9. При этом сигнал с датчика усилий 3 через нормирующий усилитель 5, преобразователь "аналог - частота" 7, логический элемент И 9 и логический элемент ИЛИ 11 поступает на счетчик импульсов 12 и далее по разрешающему сигналу блока управления на цифровой индикатор 15.

Как и в случае измерения усилия, при выборе люфта осуществляют сравнение полученного значения с соответствующим нормативным.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Тема: Средства диагностирования рулевого управления Устройство рулевого управления Рулевое управление автомобиля состоит из рулевого механизма, имеющего рабочую пару (глобоидальный червяк - двойной ролик) с передаточным отношением 17: 1 в среднем положении, и рулевого привода, в который входят рычаги рулевой трапеции, маятниковый рычаг, сошка, средняя тяга и две боковые тяги рулевой трапеции

2 слайд

Описание слайда:

3 слайд

Описание слайда:

В рулевом механизме «шестерня-рейка» усилие к колесам передается с помощью прямозубой или косозубой шестерни, установленной в подшипниках, и зубчатой рейки, перемещающейся в направляющих втулках. Для обеспечения беззазорного зацепления рейка прижимается к шестерне пружинами. Шестерня рулевого механизма соединяется валом с рулевым колесом, а рейка - с двумя поперечными тягами, которые могут крепиться в середине или по концам рейки.

4 слайд

Описание слайда:

5 слайд

Описание слайда:

Общие сведения о техническом состоянии рулевого управления В процессе эксплуатации автомобиля в зависимости от условий детали рулевого управления изнашиваются, крепление некоторых из них к раме нарушается, происходит деформация - искажение геометрической формы. Проверку состоя элементов рулевого привода а также регулировку зазора рулевого механизма и производят при втором техническом обслуживании. Ослабление креплений картера рулевого механизма, рулевой колонки, рулевого колеса на валу, сошки не допускается, а сопряжения рулевых тяг у легковых автомобилей должны быть зашплинтованы и не иметь люфтов. Величина люфта рулевого колеса как результат износа и ослабления крепления деталей, замеряемого по ободу рулевого колеса, не должна превышать величину, установленную заводом-изготовителем. Не допускаются неисправности гидравлических усилителей Заедание рулевого механизма (червяка и ролика) происходит при значительных износах в крайних положениях, которые в процессе эксплуатации реже используются, чем средние части червяка и ролика. При наличии гидравлических усилителей возникает необходимость в периодической проверке величины давления, развиваемого насосом, которое должно быть в пределах 60 - 70 кгс/см2.

6 слайд

Описание слайда:

Схема рулевого управления 1 - рулевое колесо; 2 - рулевой вал с "червяком"; 3 - "ролик" с валом сошки; 4 - рулевая сошка; 5 - средняя тяга; 6 - боковые тяги; 7 - поворотные рычаги; 8 - передние колеса автомобиля; 9 - маятниковый рычаг; 10 - шарниры рулевых тяг

7 слайд

Описание слайда:

Суммарный люфт в рулевом управлении - это угол поворота рулевого колеса от положения, соответствующего началу поворота управляемых колес в одну сторону, до положения, соответствующего началу их поворота в противоположную сторону. Суммарный люфт в рулевом управлении в регламентированных условиях испытаний не должен превышать предельных значений, установленных изготовителем в эксплуатационной документации, а при отсутствии таких данных не должен превышать: 10° для легковых автомобилей и созданных на их базе агрегатов грузовых автомобилей и автобусов 20° для автобусов 25° для грузовых автомобилей Значение суммарного люфта в рулевом управлении определяют по углу поворота рулевого колеса между двумя зафиксированными положениями начала поворота управляемых колес в результате двух или более измерений. Натяжение ремня привода насоса усилителя рулевого управления и уровень рабочей жидкости в бачке должны соответствовать требованиям, установленным изготовителем транспортного средства в эксплуатационной документации.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Оценить соответствие всех элементов рулевого управления конструкции транспортного средства. Оценить надежность крепления рулевого колеса к валу рулевой колонки. Проверить работоспособность устройства регулировки положения колонки (при его наличии) и надежность ее фиксации в заданных положениях. Оценить надежность крепления рулевой колонки. Оценить легкость вращения рулевого колеса во всем диапазоне угла поворота управляемых колес, для чего повернуть рулевое колесо по направлению движения и против направления движения часовой стрелки до упора. После окончания проверки вернуть рулевое колесо в положение, соответствующее прямолинейному движению. На транспортных средствах с гидроусилителем определить отсутствие самопроизвольного поворота рулевого колеса от нейтрального положения при работающем двигателе. Осмотреть карданные шарниры или эластичные муфты рулевой колонки, оценить надежность их крепления и убедиться в отсутствии не предусмотренных конструкцией люфтов и биений в данных соединениях. Осмотреть рулевую передачу на предмет отсутствия повреждений и подтеканий смазочного масла и рабочей жидкости Оценить надежность крепления картера рулевой передачи к раме (кузову) по наличию всех крепежных деталей и отсутствию его подвижности при вращении рулевого колеса в обе стороны. Осмотреть детали рулевого привода на предмет отсутствия повреждений и деформаций. Оценить надежность крепления деталей друг к другу и к опорным поверхностям. Проверить наличие элементов фиксации резьбовых соединений.

10 слайд

Описание слайда:

При наличии системы гидроусилителя проверить уровень рабочей жидкости в бачке насоса при работающем двигателе 12. При наличии ременного привода насоса гидроусилителя осмотреть приводной ремень на предмет отсутствия повреждений. Проверить наличие не предусмотренных конструкцией транспортного средства перемещений деталей и узлов рулевого управления относительно друг друга или опорной поверхности. 14. Осмотреть устройства, ограничивающие максимальный поворот управляемых колес. убедиться в отсутствии касания шин и дисков колес в этих положениях элементов кузова, шасси, трубопроводов и жгутов электрооборудования. 15. Осмотреть элементы системы гидроусилителя рулевого управления на предмет отсутствия подтекания рабочей жидкости. Убедиться в том, что гибкие шланги системы гидроусилителя не имеют трещин и повреждений, достигающих слоя их армирования.

11 слайд

Описание слайда:

Приборы для измерения суммарного люфта рулевого управления При проведении инструментального контроля используются механические и электронные люфтомеры.

12 слайд

Описание слайда:

Механический люфтомер К-524 состоит из: верхнего и нижнего раздвижных кронштейнов, приставляемых к ободу рулевого колеса упорами передвижной каретки, стягивающей направляющие стержни кронштейнов с помощью зажима угломерной шкалы, устанавливаемой на оси зажима и имеющей возможность поворота рукой и самоторможения (при снятии усилия) за счет фрикционной резиновой шайбы резиновой нити, натягиваемой с помощью присоса от зажима к ветровому стеклу автомобиля и играющей роль «указательной стрелки» угломерной шкалы нагрузочного устройства, представляющего собой пружинный динамометр двустороннего действия

13 слайд

Описание слайда:

Метод измерения суммарного люфта рулевого управления, выполняемого одним оператором, заключается в выявлении угла поворота рулевого колеса по угловой шкале люфтомера между двумя фиксированными положениями, которые определяются приложением к нагрузочному устройству поочередно в обоих направлениях одинаковых усилий, регламентируемых в зависимости от собственной массы оси автомобиля, приходящейся на управляемые колеса. Таблица. Зависимость усилия, прилагаемого к ободу рулевого колеса, от массы автомобиля, приходящейся на управляемые колеса Масса автомобиля, приходящаяся на управляемые колеса, т Усилие нагрузочного устройства, Н (кгс) До 1,6 7,35(0,75) От 1,6 до 3,86 9,80(1,00) Свыше 3,86 12,30(1,25) При повороте управляемого колеса в случае приложения регламентируемого усилия на него фиксируемые положения должны соответствовать моменту начала поворота колеса, который определяется вторым оператором визуально или с помощью дополнительных средств (например, индикатора).

14 слайд

Описание слайда:

Электронный люфтомер ИСЛ-401 предназначен для измерения суммарного люфта рулевого управления легковых и грузовых автомобилей, автобусов методом прямого измерения угла поворота рулевого колеса относительно управляемых колес. Основным отличием люфтомера ИСЛ-401 от К-524 является наличие датчика, фиксирующего начало поворота колеса, а не динамометра, измеряющего усилие поворота. Работа прибора основана на измерении суммарного люфта рулевого управления датчиком угла с отсечкой начала и конца отсчета по сигналам датчика начала поворота управляемого колеса. В состав прибора входят два блока: основной блок и датчик момента трогания колеса

СТД тормозов, ходовой части и рулевого управления

Классификация средств технического диагностирования (СТД)

Используемое при диагностировании контрольно-диагностическое оборудование позволяет обнаруживать скрытые неисправности автомобилей с количественной оценкой их параметров. При этом нет необходимости в разборке механизмов.

Существуют многочисленные конструкции и типы стендов, устройств, приборов для проверки одних и тех же агрегатов, систем автомобилей по одинаковым диагностическим параметрам, например, по углам установки колес автомобилей, эффективности действия тормозов, тягово-экономическим показателям и т.д.

Несмотря на все многообразие СТД, определяемое широкой номенклатурой диагностических параметров этих средств, их можно объединить в определенные группы на основании следующих классификационных признаков:

· по функциональному назначению;

· по принципиальному конструктивному исполнению;

· по степени подвижности;

· по степени автоматизации выполнения диагностирования;

· по виду энергии носителя сигналов в канале связи;

· по виду источника энергии, обеспечивающего функционирование СТО.

По функциональному назначению СТД подразделяют на комплексные для диагностирования автомобиля в целом и СТД для углубленного диагностирования. Диагностирование автомобиля в целом проводят для определения уровня показателей его эксплуатационных свойств: мощности, топливной экономичности, безопасности движения и влияния на окружающую среду. Выявив ухудшение этих показателей по сравнению с установленными нормативами, проводят углубленное (поэлементное) диагностирование с использованием оборудования для диагностирования отдельных агрегатов, узлов и других элементов автомобиля.

По принципиальному конструктивному исполнению СТД подразделяют на внешние и бортовые. К первым относятся традиционные СТД, представляющие самостоятельные приборы и устройства, подключаемые к автомобилю только на момент проведения диагностирования, в том числе и СТД со специальными штекерами-разъемами для подключения к автомобилям, оснащенным системой встроенных датчиков. В этой группе СТД подразделяют по степени подвижности на стационарные, передвижные и переносные. Бортовые СТД устанавливают на автомобиле постоянно как его дополнительное оборудование.

По степени автоматизации выполнения операций диагностирования СТД могут быть:

· автоматические;

· полуавтоматические;

· неавтоматизированные (с ручным или ножным управлением);

· комбинированные.

По виду энергии носителя сигналов в канале связи СТД подразделяются на:

· механические;

· электрические;

· магнитные;

· электромагнитные;

· оптические;

· пневматические;

· гидравлические;

· комбинированные.

По виду источника энергии, обеспечивающего функционирование СТД, эти средства можно классифицировать на: СТД, работающие от источника электрической энергии, от источника сжатого воздуха, от источника вакуума, от движущихся и вращающихся масс (механические), от генератора звуковых (и ультразвуковых) колебаний и т.д. и комбинированные.

Полученное при диагностировании фактическое значение диагностического параметра сравнивается с нормативным и делается вывод об исправности (неисправности) автомобиля. Количество используемых диагностических параметров значительно.

СТД тормозов

От общего количества всех аварий на автомобильном транспорте, совершаемых по техническим причинам, 40–45% приходится на ДТП, обусловленных неисправностями тормозных систем (низкая суммарная тормозная сила, увеличенных свободных ход педали тормоза, увеличенные зазоры в тормозных механизмах, замасливание и износ накладок, неравномерность тормозных сил и др.).

Перечень параметров диагностирования и локализации в тормозных системах подразделяется на две группы: интегральные параметры общего диагностирования и дополнительные параметры поэлементного диагностирования для поиска неисправностей в отдельных системах и устройствах.

Диагностические параметры первой группы включают: тормозной путь автомобиля, отклонение от коридора движения, замедление, удельная тормозная сила, уклон дороги (на котором автомобиль удерживается неподвижно в заторможенном состоянии), коэффициент неравномерности тормозных сил колес оси, осевой коэффициент распределения тормозной силы, время срабатывания (растармаживания) тормозного привода, давление и скорость изменения его в контурах тормозного привода и др.

Диагностические параметры второй группы включают: полный и свободный ход педали, уровень тормозной жидкости в резервуаре, сила сопротивления вращению незаторможенного колеса, путь и замедление выбега колеса, овальность и толщина стенки тормозного барабана, деформация стенки тормозного барабана, толщина тормозной накладки, ход штока тормозного цилиндра, зазор во фрикционной паре, давление в приводе, при котором колодки касаются барабана (диска) и др.

Из числа приведенных параметров при стендовых испытаниях тормозов обязательно определяются тормозные силы на отдельных колесах, общая удельная тормозная сила, коэффициент осевой неравномерности тормозных сил, время срабатывания тормозов. Показатели общей удельной тормозной силы и коэффициент осевой неравномерности являются расчетными.

Существующие СТД тормозов (СТДТ) могут быть классифицированы по пяти признакам (схема 1):

1. по использованию сил сцепления колеса с опорной поверхностью;

2. по месту установки;

3. по способу нагружения;

4. по режиму движения колеса;

5. по конструкции опорной поверхности.

Схема 1 – Классификация СТДТ автомобилей.

СТДТ подразделяют на две большие группы: первая – с использованием сил сцепления колеса с опорной поверхностью (реализуемый тормозной момент ограничен силой сцепления колеса с опорной поверхностью стенда); вторая группа – стенды, работающие без использования сил сцепления колеса с опорной поверхностью, конструктивно отличается тем, что тормозной момент передается непосредственно через колесо или через ступицу. Вторая группа не нашла широкого применения из-за сложности конструкции и нетехнологичности проведения испытаний.

По степени подвижности или месту установки СТДТ подразделяются на: стационарно устанавливаемые (стенды); переносные, подключенные к автомобилю на момент диагностирования; настроенные, используемые как дополнительное оборудование автомобиля.

По способу нагружения СТДТ делятся на силовые и инерционные. Силовые по режиму движения колеса на стенде могут быть с частичным проворачиванием колеса и с полным проворачиванием колеса. Первый режим характерен для платформенных стендов, а второй – для всех остальных стендов.

По конструкции опорных устройств – площадочные, роликовые и ленточные (первая группа); с вывешиванием оси колес и без вывешивания осей колес (вторая группа).

В силовых платформенных стендах колеса автомобиля неподвижны, поэтому при нажатии на тормозную педаль изменяется лишь усилие сдвига (срыва) заблокированных колес с места, т.е. сила трения между тормозными накладками и барабаном (диском). Существуют стенды с одной общей площадкой под все колеса и с площадками под каждое колесо автомобиля.

Недостатки силовых платформенных стендов:

· не учитывается влияние скорости движения на коэффициент трения скольжения;

· не учитываются динамические воздействия в тормозной системе;

· зависимость результатов измерений от положения колес на площадке стенда;

· зависимость результатов измерений от состояния опорной поверхности и протекторов шин;

· измеряется лишь усилие страгивания с места заторможенных колес.

Инерционные нагрузочные ленточные стенды воспроизводят дорожные условия взаимодействия шины с опорными поверхностями. Однако, они имеют значительные габариты и не обеспечивают достаточную устойчивость автомобиля при диагностировании.

Основная масса используемых на сегодняшний день СТДТ – с роликовым опорным устройством. Большинство из них – с силовым методом диагностирования, позволяющим определять тормозные силы каждого колеса при задаваемом усилии на педали, время срабатывания тормозного привода и т.д.

Наиболее достоверным является инерционный метод диагностирования на роликовых инерционных стендах. На них измеряется тормозной путь по каждому отдельному колесу, время срабатывания и замедление.

Для диагностирования тормозов в стесненных условиях, а также с целью локализации неисправностей и углубленного диагностирования эффективны переносные СТДТ. Суть метода работы этих устройств заключается в том, что колесо автомобиля принудительно раскручивают, и когда скорость вращения достигает заданного значения, срабатывает устройство нажатия на тормозную педаль, происходит торможение колеса, в процессе которого регистрируется время срабатывания тормозного привода, время нарастания замедления в заданном интервале частот вращения колеса и тормозной путь при установившемся значении тормозной силы.

В связи с малой инерционной массой вывешенных колес процесс торможения существенно отличается от реального. Приведение результатов диагностирования тормозов к реальным условиям осуществляют через переводные коэффициенты для тормозного пути и замедления.

СТД ходовой части и рулевого управления

Стенды для проверки углов установки колес классифицируются по назначению: для экспресс-диагностирования; для углубленного контроля и регулировки углов установки колес. По конструктивному исполнению: площадочные, роликовые (барабанные), оптические, электрооптические, электронные и др. Установка управляемых колес легковых автомобилей проверяется по величине схождения и углам развала управляемых колес, а также по углам наклона шкворня поворотного кулака в поперечной и продольной плоскостях, соотношению углов поворота управляемых колес, параллельности передней и задней осей, смещенности моста вбок и др.

Стенды для проверки амортизаторов предназначены для проверки амортизаторов легковых автомобилей без их демонтажа с автомобиля. Колебания подвеске задаются вибрационным методом (используется толкатель с ходом около 20 мм, частота – 15-20 Гц, время снятия диаграмм 1–2 мин.). Принцип действия стенда – принудительное возбуждение колебаний подвески с заданной начальной частотой, которая находится в сверхкритическом диапазоне колебаний и прохождением частоты возбуждения через весь диапазон низких частот, а также через точку резонанса до полного прекращения колебаний.

Станки для балансировки колес используются для устранения нарушения балансировки колес при движении на высоких скоростях, когда центробежные силы возрастают пропорционально квадрату скорости. Эти силы создают дополнительные динамические нагрузки на ступичные подшипники, вызывают биение колес и увеличивают износ протектора шин. Статическая балансировка колес производится на балансировочных станках. Определяются наиболее тяжелые точки колеса и на противоположной стороне колеса закрепляется балансировочный груз.

Динамическая неуравновешенность колеса не может быть выявлена в статическом состоянии и проявляется только при вращении колеса. При балансировки установленного на вал станка при наличии дисбаланса колесо начинает "бить" при вращении, эти колебания воспринимаются валом и передаются на индикатор, при помощи которого определяются положение и вес балансировочных грузов.

На СТОА и АТП нашли применение 2 типа балансировочных станков: со снятием колеса с автомобиля и без снятия колеса. Стенды первого типа применяют при ремонтных и шиноремонтных работах, а также при ТО автомобилей. Стенды второго типа – при диагностировании автомобилей на специализированных диагностических постах (станциях, участках), на постах заявочного диагностирования, а также при ТО автомобилей.

Диагностирование рулевого управления осуществляется по суммарному окружному люфту и общей силе трения (усилию, необходимому для поворота левого колеса).

Проверка состояния рулевого управления автомобилей может осуществляться прибором К-402 (см. рисунок 1).

Рисунок 1 – Прибор К-402 для проверки рулевого управления

1,4 – захваты;

2 – стрелка;

3 – шкала измерения люфта;

5 – шкала измерения усилия поворота рулевого колеса (динамометра).

Прибор К-402 состоит из пружинного динамометра и люфтомера со стрелкой. Динамометр устанавливается на рулевом колесе, а стрелка 2 крепится к рулевой колонке. Люфт определяется по углу поворота рулевого колеса при заданном усилии на ободе. При этом переднее колесо автомобиля, имеющего неразрезную поперечную рулевую тягу, должно быть вывешено. Силу трения определяют по усилию, прикладываемому к ободу колеса, необходимому для поворота вывешенных колес. Прибор измеряет люфт рулевого колеса в пределах 0-25˚ и силу трения в диапазонах 0-2 и 0-12 кгс. Прибор предназначен для диагностирования рулевого управления автомобилей, имеющих диаметр рулевого колеса 400-540 мм.

Стенды для определения мощности (тормозные стенды)- одно из наиболее крупных и дорогостоящих видов стационарного оборудования, вокруг которого на постах диагностирования комплектуют другие передвижные и переносные средства диагностирования.

Наибольшее распространение имеют роликовые тормозные стенды (с беговыми барабанами), имитирующие сопротивление качения при разных скоростях движения автомобиля.

Для создания нагрузки в стендах применяют фрикционные, гидравлические, токовихревые и другие тормозные устройства. Чаще используют токовихревые тормозные устройства, обеспечивающие высокую стабильность тормозных характеристик и широкий диапазон плавного регулирования, что важно для программирования режимов нагружения.

Для диагностирования составных частей автомобиля используют следующие параметры:

Для трансмиссии

постоянство отношений частот вращения коленчатого вала двигателя и составных частей трансмиссии (пробуксовка сцепления); зазоры в составных частях трансмиссии; сила, прикладываемая к педали сцепления для его выключения; ход педали сцепления; дисбаланс карданного вала (в гмм); биение карданного вала; уровни виброускорений (в дБ);


Похожая информация.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ
Кафедра эксплуатации автомобилей
ДИАГНОСТИРОВАНИЕ И РЕГУЛИРОВКА
РУЛЕВОГО УПРАВЛЕНИЯ АВТОТРАНСПОРТНЫХ СРЕДСТВ
Методические указания к лабораторной работе по курсам
«Техническая эксплуатация транспортных средств»
и «Техническая диагностика на транспорте» для студентов
специальностей 150200 «Автомобили и автомобильное хозяйство»
и 240400 «Организация и безопасность дорожного движения»
дневной формы обучения
Составители А.И.ПОДГОРНЫЙ
Д.В.ЦЫГАНКОВ
Утверждены на заседании кафедры
Протокол № 1 от 3.09.02
Рекомендованы к печати учебно-методической комиссией специальности 150200
Протокол №6 от 16.10.02
Электронная копия находится в библиотеке главного корпуса
ГУ КузГТУ
КЕМЕРОВО 2002

1
Цель работы: получить практические навыки по диагностированию и регулировке рулевого управления согласно ГОСТ Р 51709-2001.
Перед выполнением работы следует изучить:
1) назначение, принцип действия и особенности конструкций рулевых управлений, применяемых на отечественных и импортных автомобилях;
2) методы диагностирования и требования, предъявляемые к рулевым управлениям;
3) устройство и принцип действия оборудования, применяемого в ла- бораторной работе;
4) порядок выполнения работы.


импортных автомобилях
Рулевое управление обеспечивает необходимое направление движения автомобиля путем раздельного или согласованного поворота его управляе- мых колес. Совокупность механизмов, служащих для поворота управляе- мых колес, называется рулевым управлением. Рулевое управление включает рулевой механизм, который осуществляет передачу усилия от водителя к рулевому приводу, рулевой привод, который осуществляет передачу усилия от рулевого механизма к управляемым колесам, а у некоторых автомобилей рулевой усилитель, облегчающий поворот управляемых колес. Схема руле- вого управления показана на рис. 1.1.
Каждое управляемое колесо установлено на поворотной цапфе 13, со- единенной с балкой моста 11 шкворнем 8. Шкворень неподвижно закреплен в балке, и его верхний и нижний концы входят в проушины поворотной цапфы. При повороте цапфы за рычаг 7 она вместе с установленным на ней управляемым колесом поворачивается вокруг шкворня. Поворотные цапфы соединены между собой рычагами 9 и 12 и поперечной тягой 10. Поэтому управляемые колеса поворачиваются одновременно.
Поворот управляемых колес осуществляется при вращении водителем рулевого колеса 1. От него вращение передается через вал 2 на червяк 3, на- ходящийся в зацеплении с сектором 4. На валу сектора закреплена сошка 5, поворачивающая через продольную тягу 6 и рычаг 7 поворотные цапфы с управляемыми колесами.

2
Рис. 1.1. Схема рулевого управления:
1 – рулевое колесо; 2 – рулевой вал; 3 – червяк; 4 – сектор; 5 – рулевая сошка; 6 – продольная тяга; 7, 9 и 12 – рычаги поворотных цапф;
8 – шкворень; 10 – поперечная тяга; 11 – балка моста; 13 – поворотная цап- фа
Рулевое колесо 1, вал 2, червяк 3 и сектор 4 образуют рулевой меха- низм, увеличивающий момент, прикладываемый водителем к рулевому ко- лесу для поворота управляемых колес. Сошка 5, продольная тяга 6, рычаги
7, 9 и 12 поворотных цапф и поперечная тяга 10 составляют рулевой при- вод, передающий усилие от сошки к поворотным цапфам обоих управляе- мых колес. Поперечная тяга 10, рычаги 9 и 12 образуют рулевую трапецию, обеспечивающую необходимое соотношение между углами поворота управляемых колес.
Увеличение момента рулевым механизмом оценивается передаточным числом рулевого механизма, представляющим собой отношение угла пово- рота рулевого колеса к углу поворота сошки. В зависимости от типа рулево- го механизма (его рабочей пары) передаточное число может быть постоян- ным или переменным, т.е. менять свое значение в процессе поворота колеса.
У легковых автомобилей передаточное число рулевого механизма составля- ет 12-20, а у грузовых автомобилей 15-25. Передаточное число рулевого привода зависит от отношения плеч рычага поворотной цапфы и рулевой

3
сошки. При повороте управляемых колес вследствие изменения наклона этих рычагов передаточное число рулевого привода изменяется в среднем от 0,85 до 1,1.
Рис. 1.2. Схема рулевого управления при независимой подвеске:
1 – стойка; 2 – поворотная цапфа; 3 – рычаг поворотной цапфы; 4 и 9 – боковые тяги; 5 – маятниковый рычаг; 6 – сошка; 7 – рулевой механизм; 8 – средняя тяга
Поперечная тяга состоит из трех частей: средней тяги 8 и шарнирно соединенных с ней двух боковых тяг 4 и 9. Средняя тяга одним концом со- единена с сошкой 6, а другим – с маятниковым рычагом 5, поворачиваю- щимся вокруг опоры на кузове автомобиля. Шарнир, соединяющий каждую боковую тягу со средней тягой, близко расположен к оси качания колеса.
Поэтому тяга не вызывает произвольного поворота колеса при деформации упругого элемента подвески .

4
1.1. Рулевые механизмы
Рулевой механизм включает в себя рулевую пару (иногда называют рулевой передачей), размещенную в картере, рулевой вал, рулевую колонку и рулевое колесо.
Из условий компоновки рулевого механизма рулевой вал может со- стоять из двух или трех частей, соединяемых карданными шарнирами.
К конструкции рулевых механизмов предъявляется ряд специальных требований: высокий КПД в прямом направлении (при передаче усилия от рулево- го колеса) для облегчения управления автомобилем и несколько понижен- ный КПД в обратном направлении для снижения силы толчков , передавае- мых на рулевое колесо от управляемых колес при наезде на неровности; обратимость рулевой пары, чтобы рулевой механизм не препятствовал стабилизации управляемых колес; минимальный зазор в зацеплении элементов рулевой пары в нейтраль- ном положении управляемых колес и в некотором диапазоне углов поворота
(беззазорное зацепление) при обязательной возможности регулирования за- зора в процессе эксплуатации; заданный характер изменения передаточного числа рулевого механиз- ма; травмобезопасность рулевого механизма, чтобы при лобовом столкно- вении он не был причиной травмы водителя.
Классификация рулевых механизмов представлена на рис. 1.3.
Рис. 1.3. Классификация рулевых механизмов

5
1.1.1. Зазоры в зацеплении рулевой пары
Оптимальная характеристика зазора в зацеплении рулевой пары пока- зана на рис. 1.4. С ростом угла поворота рулевого колеса зазор должен уве- личиваться, что необходимо для предотвращения заедания рулевой пары после регулирования зацепления при износе, который в основном имеет ме- сто в зоне, соответствующей малым углам поворота рулевого колеса. Зазор в зацеплении рулевой пары должен определяться при отсутствии осевого за- зора рулевого вала.
Рис. 1.4. Зазоры в зацеплении рулевой пары
Суммарный зазор в рулевом управлении составляют зазоры в рулевом механизме и рулевом приводе, он определяется по углу свободного поворо- та рулевого колеса при нейтральном положении управляемых колес. Повы- шенный суммарный зазор недопустим, так как он может привести к виля- нию управляемых колес и ухудшению устойчивости.
В эксплуатации повышенный зазор в рулевом управлении может поя- виться при увеличении зазоров: в подшипниках управляемых колес; в шкворнях или шаровых опорах бесшкворневой подвески; в сочленениях ру- левого привода; в результате слабой затяжки рулевой сошки на валу сошки или слабого крепления картера рулевого механизма; рулевого вала; в зацеп- лении рулевой пары. При установлении причин повышенного зазора в руле- вом управлении и устранении их должна быть соблюдена последователь- ность, соответствующая приведенному выше перечислению этих причин.

6
1.1.2. Шестеренные рулевые механизмы
Шестеренные рулевые механизмы выполняют в виде редуктора из зубчатых колес (применяется редко) или в виде пары из шестерни 2 и рейки
3 (рис. 1.5). Реечные рулевые механизмы получают все более широкое при- менение на легковых автомобилях малого (ВАЗ-2108, ЗАЗ-1102 и
ВАЗ-1111), среднего и даже большого классов.
Достоинствами реечных рулевых механизмов являются простота и компактность конструкции, обеспечивающие им наименьшую стоимость по сравнению с рулевыми механизмами других типов, высокий КПД
(η↓РМ = ηРМ = 0,90…0,95). С реечным рулевым механизмом можно при- менять четырехшарнирный рулевой привод при независимой подвеске ко- лес. Из-за высокого значения обратного КПД такой механизм без усилителя целесообразно устанавливать только на легковых автомобилях малого клас- са, так как в этом случае толчки со стороны дороги, которые передаются на рулевое колесо, в некоторой степени могут поглощаться в результате тре- ния рейки и металлокерамического упора. На легковых автомобилях более высокого класса необходим рулевой усилитель, который поглощает толчки.
Рис. 1.5. Реечный рулевой механизм:
1 – рулевой вал; 2 – шестерня; 3 – рейка; 4 – упор

7
1.1.3. Червячные рулевые механизмы
Червячные рулевые механизмы применяют как на легковых, так и на грузовых автомобилях и автобусах. Наибольшее распространение получили червячно-роликовые рулевые механизмы (ВАЗ моделей 2105, 2106, 2107
«Москвич-2140», ГАЗ-3102, ГАЗ-53А, УАЗ и др.). Рулевые пары состоят из глобоидного червяка и двух- или трехгребневого ролика. В редких случаях для автомобилей особо малого класса применяют одногребневый ролик.
Упрощенная схема червячно-роликовой рулевой пары показана на рис. 1.6, а.
Рис. 1.6. Червячно-роликовый рулевой механизм: а – схема; б – конструкция; 1 – вал сошки; 2 – трехгребневый ролик;
3 – глобоидный червяк; 4 – сошка
Глобоидный червяк предназначен для увеличения рабочего угла (угла, определяемого зацеплением рулевой пары) поворота вала сошки. Червяк ус- танавливают на радиально-упорных шариковых или конических роликовых подшипниках, а ролик – на шариковых или игольчатых подшипниках в пазу
a)
б)

8
вала сошки. Иногда и в опорах вала сошки используют подшипники ка- чения. Все это обеспечивает таким механизмам сравнительно высокий
КПД:
η↓
РМ
= 0,85, η
РМ
= 0,70.
Передаточное число рулевых механизмов с двух- и трехгребневым роликом, определяемое отношением числа зубьев червячного колеса (ролик рассматривается как сектор червячного колеса) к числу заходов червяка , практически постоянное. Червяк, как правило, однозаходный. Зазор в заце- плении ролика с червяком переменный, что может быть обеспечено при разных значениях радиусов дуги образующей червяка и траектории роли- ка. Разница этих радиусов позволяет регулировать зазор в зацеплении, т. е. сближать элементы пары, не опасаясь их заклинивания в крайних положе- ниях. Для расширения зоны беззазорного зацепления в ряде конструкций червячно-роликовых пар червяк посажен эксцентрично относительно оси рулевого вала.
Пример конструкции рулевого механизма с червячно-роликовой парой показан на рис. 1.6, б. Этот механизм, устанавливаемый на автомобиле ГАЗ-
3102, имеет, как все механизмы такого типа, две регулировки: осевого зазо- ра при помощи прокладок под передней крышкой и зацепления при помощи регулировочного винта, перемещающего вал сошки вместе с роликом, на- чальное смещение оси которого относительно оси червяка составляет 6...6,5 мм. Для обеспечения хорошего контакта ролика с червяком ось ролика рас- положена не перпендикулярно оси вала сошки, а имеет наклон, угол кото- рого близок среднему углу наклона витков червяка.
Рис.1.7. Червячно-секторный рулевой механизм:
1 – червяк; 2 – боковой сектор; 3 – рулевой вал; 4 – распределитель усилителя

9
На некоторых грузовых автомобилях «Урал-4320» (рис. 1.7) устанав- ливают червячно-секторные рулевые механизмы с боковым сектором.
В рулевой паре этого типа обеспечивается достаточно малое давление на зубья при передаче больших усилий. Передаточное число механизма практически постоянное.
Наличие трения скольжения в паре обусловливает сравнительно низ- кий КПД этого рулевого механизма (η↓
РМ
= 0,65 – 0,75;
η
РМ
= 0,55 – 0,60). Здесь рулевой вал с червяком установлен на цилиндри- ческих роликовых подшипниках, допускающих некоторое осевое переме- щение в пределах перемещения закрепленного на нем золотника гидроуси- лителя. Вал сошки, выполненный как одно целое с боковым сектором, уста- новлен на игольчатых подшипниках. Зазор в зацеплении червяка с зубчатом сектором переменный, наименьший в среднем положении сектора, что дос- тигается нарезкой зубьев сектора специальной формы.
Зацепление регулируют, изменяя толщину прокладок под крышкой, имеющей выступ, упирающийся в торец сектора.
1.1.4. Винтовые рулевые механизмы
Винтовые рулевые механизмы могут иметь различное конструктивное исполнение: винторычажные («винт – гайка – рычаг», «качающийся винт и гайка», «винт и качающаяся гайка») и винтореечные.
Винторычажные рулевые механизмы в настоящее время применяются редко, так как имеют низкий КПД и компенсировать износ регулировкой невозможно. Широко применяются на автомобилях всех типов (ЗИЛ, Ка- мАЗ, МАЗ, БелАЗ, КАЗ, «Магирус» и др.) винтореечные рулевые механиз- мы, включающие в себя винт 1, шариковую гайку-рейку 2 и сектор 3, вы- полненный за одно целое с валом сошки (рис. 1.8, а).
КПД винтореечного механизма высокий в обоих направлениях
(η↓
РМ
= η
РМ
= 0,80 – 0,85), поэтому без усилителя, воспринимающего толч- ки со стороны дороги, его целесообразно устанавливать только на легковые автомобили малого класса.
Беззазорное зацепление в среднем положении этого механизма осуще- ствляется при помощи следующих мероприятий: профиль канавок винта и гайки эллиптический, образованный двумя дугами несколько большего радиуса, чем радиус шарика, что дает возмож- ность шарику соприкасаться с профилем канавки в двух точках канавки винта и в двух точках канавки гайки. Винты, гайки и шарики рассортировы- вают на несколько групп с последующей селективной сборкой; зубья сектора (рис. 1.8, б) нарезают из центра смещенного относи- тельно оси вала сошки, это позволяет устранять зазор после износа, не опа-

10
саясь заклинивания в крайних положениях, где зуб сектора имеет меньшую толщину, чем в середине сектора.
Рис.1.8. Винтореечный рулевой механизм:
1 – винт; 2 – шариковая рейка – гайка; 3 – сектор
Зазор в зацеплении сектора и рейки переменный. Регулируют зацепле- ние винтом, перемещающим вал сошки вместе с сектором, зубья которого нарезаны под углом к валу сошки.
a)
б)

11
На ряде автомобилей (КАЗ, МАЗ, КрАЗ) в настоящее время применя- ют винтореечные рулевые механизмы, в которых зубья нарезаны парал- лельно оси вала сошки, т. е. не имеют клиновидной формы (рис. 1.9).
Рис.1.9. Винтореечный рулевой механизм автомобиля КАЗ-4540

12
Зацепление в этих механизмах регулируют поворотом двух вклады- шей 1 и 2 (рис. 1.9.), в которые запрессованы подшипники скольжения, внутренняя поверхность которых эксцентрична.
1.1.5. Кривошипные рулевые механизмы
Их применяют сравнительно редко: одношиповые рулевые механизмы
(рис. 1.10, а) до середины сороковых годов устанавливали на грузовых ав- томобилях ЗИС.
Рис. 1.10. Кривошипные рулевые механизмы
Двухшиповые рулевые механизмы (рис. 1.10, б) позволяют увеличить угол поворота вала сошки на угол γ и снизить давление на шип в среднем положении, когда оба шипа находятся в зацеплении с червяком (в крайних положениях один шип выходит из зацепления). При установке шипов на подшипниках (рис. 1.10, в) КПД кривошипного рулевого механизма такой же, как КПД червячно-роликового рулевого механизма. Передаточное число кривошипного рулевого механизма может быть постоянным или перемен-
а)
б)
в)

13
ным – это зависит от способа нарезки червяка. Рулевые механизмы этого типа могут быть регулируемыми. Для этой цели шипы выполняют конус- ными соответственно профилю нарезки червяка. Глубина нарезки различна в средней части и по краям, благодаря чему может быть обеспечен доста- точный диапазон беззазорного зацепления.
1.1.6. Травмобезопасные рулевые механизмы
Рулевой механизм может быть причиной серьезной травмы водителя при лобовом столкновении автомобиля с препятствием. Травма может быть нанесена при смятии передней части автомобиля, когда весь рулевой меха- низм перемещается в сторону водителя. Поэтому картер рулевого механиз- ма необходимо располагать в таком месте, где деформация при лобовом столкновении будет наименьшей.
Водитель может получить травму также при резком перемещении впе- ред в результате лобового столкновения. Ремни безопасности при слабом их натяжении не предохраняют от столкновения с рулевым колесом или руле- вым валом, когда перемещение вперед составляет 300…400 мм. Для пасса- жиров такое перемещение обычно не приводит к опасным последствиям.
По статистике лобовые столкновения автомобилей составляют свыше
50% всех дорожно-транспортных происшествий. Вследствие этого как меж- дународные, так и национальные правила предписывают установку на ав- томобилях травмобезопасных рулевых механизмов.
Существуют некоторые нормативы для испытания травмобезопасных рулевых механизмов. Так, при лобовом ударе (удар о бетонный куб при движении со скоростью 14 м/с (50 км/ч) верхний конец рулевого вала не должен перемещаться внутрь салона (кабины) в горизонтальном направле- нии более чем на 127 мм). На специальном манекене регистрируется вели- чина усилия в горизонтальном направлении на уровне груди манекена при скорости 5,5 м/с (24 км/ч). Это усилие не должно превосходить 11,34 кН.
Существуют травмобезопасные рулевые механизмы различных конст- рукций. Основное требование к ним – поглощение энергии удара, а следо- вательно, снижение усилия, наносящего травму водителю.
Первоначально для придания рулевым механизмам травмобезопасных свойств устанавливали рулевое колесо с утопленной ступицей и с двумя спицами, что позволило значительно снизить тяжесть наносимых повреж- дений при ударе. В дальнейшем, кроме этого, стали устанавливать специ- альный энергопоглощающий элемент.
На рис. 1.11 приведен рулевой механизм автомобиля ВАЗ-2121. Здесь рулевой вал состоит из трех частей, связанных карданными шарнирами.
При лобовом столкновении, когда передняя часть автомобиля деформиру-

14
ется, рулевой вал складывается, при этом перемещение верхней части руле- вого механизма внутрь салона незначительно. Перемещение рулевого меха- низма сопровождается некоторым поглощением энергии удара при деформации кронштейна крепления рулевого вала. Особенность крепления кронштейна заключается в том, что два из четырех болтов (передние) крепят кронштейн через пла- стинчатые шайбы, которые при ударе деформируются и проваливаются че- рез прямоугольные отверстия кронштейна, а сам кронштейн деформирует- ся, поворачиваясь относительно фиксированных точек крепления.
Рис. 1.11. Травмобезопасный рулевой механизм автомобиля ВАЗ-2121
На автомобиле ГАЗ-3102 энергопоглощающий элемент травмобезо- пасного рулевого механизма представляет собой резиновую муфту, уста- новленную между верхней и нижней частями рулевого вала (рис. 1.12).
В ряде зарубежных конструкций энергопоглощающим элементом ру- левого механизма служит сильфон, соединяющий рулевое колесо с рулевым валом (рис. 1.13, а) или сам рулевой вал, в верхней части представляющий собой перфорированную трубу (рис. 1.13, б). На рисунке показаны последо- вательно фазы деформации перфорированной трубы и максимальная де- формация, которая для этой конструкции значительна.

15
Рис. 1.12. Травмобезопасный рулевой механизм автомобиля ГАЗ-3102:
1 – фланец; 2 – предохранительная пластина; 3 – резиновая муфта
Некоторое применение нашли энергопоглощающие элементы рулевых механизмов, в которых две части рулевого вала соединяются при помощи нескольких продольных пластин, привариваемых к концам соединяемых валов и деформирующихся при ударе. Такое энергопоглощающее устройст- во носит название «японский фонарик».

16
Рис. 1.13. Травмобезопасные рулевые механизмы: а – с энергопоглощающим сильфоном; б – с перфорированным труб- чатым рулевым валом
1.2. Рулевые приводы
К рулевому приводу предъявляют следующие требования: правильное соотношение углов поворота колес, отсутствие автоколебаний управляемых колес, а также самопроизвольного поворота колес при колебаниях автомо- биля на подвеске.
Рулевой привод включает рулевую трапецию, рычаги и тяги, связы- вающие рулевой механизм с рулевой трапецией, а также рулевой усилитель, устанавливаемый на ряде автомобилей.
1.2.1. Рулевая трапеция
В зависимости от компоновочных возможностей рулевую трапецию располагают перед передней осью (передняя рулевая трапеция) или за ней
(задняя рулевая трапеция). При зависимой подвеске колес применяют тра- пеции с цельной поперечной тягой; при независимой подвеске – только тра- пеции с расчлененной поперечной тягой, что необходимо для предотвраще- ния самопроизвольного поворота управляемых колес при колебаниях авто- мобиля на подвеске.

17
1.2.2. Поперечная тяга
Для ее изготовления обычно применяют бесшовную трубу, на резьбо- вые концы которой навертывают наконечники с шаровыми пальцами. Дли- на поперечной тяги должна быть регулируемой , так как она определяет схождение колес. При зависимой подвеске, когда применяется неразрезная трапеция, регулирование выполняют поворотом поперечной тяги относи- тельно наконечников (при освобождении стопорных гаек). Так как резьба, нарезанная на концах тяги, имеет разное направление, то поворот тяги вы- зывает изменение расстояния между шарнирами поперечной тяги. Часто шаг резьбы на разных концах тяги делают неодинаковым для более точной регулировки.
Наличие зазора в шарнирах поперечной тяги недопустимо, поэтому предпочтительно применение шарниров с автоматическим регулированием зазора в процессе изнашивания, что возможно, когда усилие пружины на- правлено по оси шарового пальца 2 (рис. 1.14, а).
На рис. 1.14, б показан шарнир поперечной тяги (автомобили МАЗ), где зазор, образовавшийся в результате изнашивания, выбирают, вращая гайку 3, сжимающую пружину, для чего необходимо снять наконечник тяги.
1.2.3. Продольная тяга
Связывающая сошку с поворотным рычагом тяга применяется глав- ным образом при зависимой подвеске. Кинематические перемещения про- дольной тяги и подвески должны быть согласованы, чтобы исключить са- мопроизвольный поворот управляемых колес при деформации упругого элемента подвески. Компоновка, показанная на рис. 1.15, а, не обеспечивает необходимого согласования траекторий переднего конца продольной тяги 2 и центра колеса. Поэтому при вертикальных и угловых колебаниях автомо- биля возникает «рыскание» управляемых колес.
Сравнительно хорошее согласование может быть получено при распо- ложении рулевого механизма перед передней осью (рис. 1.15, б) или при расположении рулевого механизма за передней осью и передним располо- жением серьги листовой рессоры 3. Однако при переднем расположении серьги продольные силы, возникающие при наезде передних колес на пре- пятствие, в большей степени передаются на раму автомобиля. Шаровые шарниры (рис. 1.14, в), размещенные по концам тяги, поджимаются жест- кими пружинами 4, при-

18
Рис. 1.14. Конструкции шарниров рулевых тяг чем расположение шарниров и пружин дает возможность несколько амор- тизировать удары, воспринимаемые как левым, так и правым управляемыми колесами .
Рис. 1.15. Продольные рулевые тяги: а и б – схемы расположения

19

Требования и методы проверки рулевого управления регламентируют- ся ГОСТ Р 51709-2001 «Автотранспортные средства. Требования безопас- ности к техническому состоянию и методы проверки». Этот ГОСТ вступил в действие с 1 января 2002 г., сменив известный ГОСТ 25478-91 с тем же названием. В ГОСТ Р 51709-2001 произошли очень серьезные изменения, касающиеся рулевого управления.
Основным оборудованием, необходимым для проверки рулевого управления, является прибор для определения суммарного люфта в рулевом управлении – люфтомер. Согласно ГОСТ 25478-91 суммарным люфтом в рулевом управлении назывался суммарный угол, на который поворачивает- ся рулевое колесо автомобиля под действием поочередно приложенных к нему противоположно направленных регламентированных усилий при не- подвижных управляемых колесах. Таким образом, все люфтомеры имели угломерное устройство, позволяющее измерять угол поворота рулевого ко- леса, и динамометрическое устройство, позволяющее прикладывать к руле- вому колесу необходимое регламентное усилие при измерении.
По ряду причин требование к люфтомерам в
ГОСТ
Р 51709-2001 было изменено. В настоящее время необходимо для измерения пользоваться такими люфтомерами, которые позволяют фиксировать одно- временно угол поворота рулевого колеса и начало поворота управляемых колес. Естественно, необходимость применения в настоящее время динамо- метрических устройств в люфтомерах отпадает за счет применения уст- ройств, позволяющих фиксировать начало поворота управляемых колес. В связи с этим изменилось и само значение термина «суммарный люфт в ру- левом управлении».
Согласно ГОСТ Р 51709-2001,
суммарным люфтом в рулевом
управлении называется угол поворота рулевого колеса от положе-
ния, соответствующего началу поворота управляемых колес АТС в
одну сторону, до положения, соответствующего началу их поворота
в противоположную сторону.
Ниже в табл. 2.1 представлены основные требования к рулевому управлению и методы его проверки.

20
Таблица 2.1
Требования
Методы проверки
1.Изменение усилия при повороте ру- левого колеса должно быть плавным во всем диапазоне угла его поворота
2.Максимальный поворот рулевого колеса должен ограничиваться только устройствами, предусмотренными конструкцией АТС
Проверяют на неподвижном АТС при работающем двигателе посред- ством поочередного поворота руле- вого колеса на максимальный угол в каждую сторону
3.Самопроизвольный поворот рулево- го колеса с усилителем рулевого управления от нейтрального положе- ния при неподвижном состоянии АТС и работающем двигателе не допуска- ется
Проверяют наблюдением за поло- жением рулевого колеса на непод- вижном АТС с усилителем рулево- го управления после установки ру- левого колеса в положение, при- мерно соответствующее прямоли- нейному движению и пуска двига- теля
4
.Суммарный люфт в рулевом управ- лении не должен превышать предель- ных значений, указанных изготовите- лем АТС в эксплуатационной доку- ментации , или, если такие значения изготовителем не указаны, следующих предельных допустимых значений: легковые автомобили и создан- ные на базе их агрегатов грузовые и автобусы – 10 0
автобусы – 20 0
грузовые – 25 0
Проверяют на неподвижном АТС с использованием приборов для оп- ределения суммарного люфта в ру- левом управлении, фиксирующих угол поворота рулевого колеса и начало поворота управляемых ко- лес.
Управляемые колеса должны быть предварительно приведены в положение, примерно соответст- вующее прямолинейному движе- нию, а двигатель АТС, оборудован- ного усилителем, должен работать.
Рулевое колесо поворачивают до положения, соответствующего началу поворота управляемых ко- лес АТС в одну сторону, а затем – в другую сторону до положения, со- ответствующего началу поворота

21
Продолжение табл. 2.1 управляемых колес. При этом из- меряют угол между указанными крайними положениями рулевого колеса, который является суммар- ным люфтом в рулевом управле- нии
5. Не допускается подвижность рулевой колонки в плоскостях, проходящих че- рез ее ось, рулевого колеса в осевом на- правлении, картера рулевого механиз- ма, деталей рулевого привода относи- тельно друг друга или опорной поверх- ности. Резьбовые соединения должны быть затянуты и зафиксированы. Люфт в соединениях рычагов поворотных цапф и шарниров рулевых тяг не до- пускается. Устройство фиксации поло- жения рулевой колонки с регулируе- мым положением рулевого колеса должно быть работоспособно
Проверяют органолептически на неподвижном АТС при нерабо- тающем двигателе путем прило- жения нагрузок к узлам рулевого управления и простукивания резьбовых соединений. Допуска- ется визуальная проверка состоя- ния шарнирных соединений на специальных стендах для провер- ки рулевого привода
6. Применение в рулевом механизме и рулевом приводе деталей со следами остаточной деформации, с трещинами и другими дефектами не допускается
Проверяют визуально на непод- вижном АТС
7. Натяжение ремня привода насоса усилителя рулевого управления и уро- вень рабочей жидкости в его резервуаре должны соответствовать требованиям, установленным изготовителем АТС в эксплуатационной документации. Под- текание рабочей жидкости в гидросис- теме усилителя не допускается
Проверяют измерением натяже- ния ремня привода насоса усили- теля рулевого управления на не- подвижном АТС с помощью спе- циальных приборов для одновре- менного контроля усилия и пере- мещения или с использованием линейки и динамометра с макси- мальной погрешностью не более
7%

22
3. Устройство и принцип действия оборудования,
применяемого в лабораторной работе
Студенты должны научиться измерять суммарный люфт в рулевом управлении, используя люфтомеры, фиксирующие начало поворота управ- ляемых колес, и люфтомеры-динамометры.
Люфтомер, фиксирующий поворот управляемых колес, состоит из двух основных элементов: угломерного устройства и датчика поворота управляемых колес. Пользоваться им необходимо согласно заводской инст- рукции и указаниям преподавателя.
Для измерения суммарного люфта рулевого управления в лаборатории имеется механический универсальный люфтомер-динамометр. На рис. 3.1 представлен общий вид прибора.
Люфтомер состоит из верхнего 1 и нижнего 2 раздвижных кронштей- нов, приставляемых к ободу рулевого колеса упорами 3; разрезной каретки
4, стягивающих направляющие стержни 5 кронштейнов 1 и 2 с помощью зажима; угломерной шкалы 7, устанавливаемой на оси зажима 6 с помощью поворота и самоторможения при снятии усилия за счет фрикционной, рези- новой шайбы 8; резиновой нити 9, натягиваемой, с помощью присоса 10, от зажима 6 к лобовому стеклу автомобиля и играющей роль указательной
«стрелки» угломерной шкалы, и нагрузочного устройства, представляющего собой пружинный динамометр 11 двухстороннего действия.
Каретка 4 с осью поворота угломерной шкалы 7 выставляется в центр поворота рулевого колеса путем обеспечения одинаковых вылетов («а» и
«в») стержней 5 относительно каретки. Этим обеспечивается неподвиж- ность «стрелки» при повороте рулевого колеса и правильность измерения люфта.
Динамометр 11 устанавливается на нижнем кронштейне 2 люфтомера с помощью кронштейна 13, который с помощью винтов 16 закрепляется на пальце 17 после регулировки в положение , при котором при установке люфтомера на ободе рулевого колеса приложенное к нагрузочному устрой- ству усилие пришлось бы на середину сечения обода.
Метод измерения суммарного люфта заключается в выявлении угла поворота рулевого колеса по угловой шкале люфтомера, между двумя фик- сированными положениями, определяемыми приложением к нагрузочному устройству, поочередно в обоих направлениях, одинаковых, регламенти- руемых в зависимости от собственной массы автомобиля, приходящейся на управляемые колеса, усилий. Зависимость усилий от собственной массы ав- томобиля, приходящейся на управляемые колеса, приведена в табл. 3.1

23
Рис. 3.1. Общий вид люфтомера:
1, 2 – верхний и нижний кронштейны; 3 – упор кронштейна; 4 – ка- ретка; 5 – стержень направляющий; 6 – зажим; 7 – шкала угломерная; 8 – шайба фрикционная; 9 – нить резиновая; 10 – присос; 11 – динамометр; 12 –
«безмен»; 13 и 14 – кронштейны динамометра или «безмена»; 15 – цапфа;
16 – винт стопорный; 17 – палец установочный; 18– кольцо прижимное; 19
– вороток; 20 – упор шкалы
Таблица 3.1
Масса автомобиля приходя- щаяся на управляемые колеса; т
Усилие нагрузочного устрой- ства, Н (кгс) до1,6 7,35
(0,75) свыше 1,6 до 3,86 9,8 (1,00) свыше 3,86 12,30 (1,25)
При возникновении в отдельных случаях поворота управляемых колес при приложении регламентируемого усилия на рулевом колесе фиксиро- ванные положения рулевого колеса должны соответствовать моментам на- чала поворота управляемых колес, определяемых визуально.

24
4. Порядок выполнения работы
1) Установить управляемые колеса рулем в нейтральное положение.
2) Ослабив зажимы 6 люфтомера, раздвинуть кронштейны 1 и 2 до размера, визуально соответствующего диаметру рулевого колеса.
3) Установить люфтомер на рулевом колесе, приставив кронштейны к ободу рулевого колеса до плотного соприкосновения с ним, в том числе и упорами 3, и поджав кольцами 18 и воротками 19.
4) Проверить и при необходимости отрегулировать положение дина- мометра 11 или цапфы 15, так чтобы они располагались визуально посере- дине сечения обода рулевого колеса.
5) Выставить каретку 4 с угломерной шкалой 7 в центр рулевого коле- са, обеспечив равенство вылетов (а=в) стержней 5 относительно каретки 4.
6) Протянуть «стрелку» 9 к лобовому стеклу автомобиля и закрепить присосом 10. «Стрелка» при этом должна быть расположена примерно в центре угломерной шкалы, параллельно и как можно ближе к ней.
7) Нажимая на головку динамометра 11 справа, медленно повернуть рулевое колесо по часовой стрелке до момента достижения соответствую- щего регламентированного усилия (см. табл. 2.1), т.е. до совпадения соот- ветствующей риски (1, 2 или 3 см. рис. 4.1) указателя 4 динамометра с кромкой 5 крышки 6 корпуса. В этом положении, не трогая рулевого колеса, повернуть шкалу 7 до совпадения нулевого деления с нитью.
Рис. 4.1. Вид динамометра (правая часть):
1, 2 и 3 – риски регламентируемых усилий, соответственно: 0, 75,
1,0 и 1,25 кг; 4 – указатель; 5 – кромка крышки; 6 – крышка; 7 – шпилька;
8 – чашка пружины; 9 – пружина; 10 – головка; 11 – корпус

25 8) Нажимая на головку динамометра 11 слева, медленно повернуть ру- левое колесо против часовой стрелки до достижения регламентируемого усилия, так же как и в первом случае.
9) По положению нити относительно угломерной шкалы 7 определить значение суммарного люфта рулевого управления. Окончательный резуль- тат уточнить по результатам двух или более измерений и уточненное значе- ние сравнить с допустимым (см. раздел 2). Результаты занести в протокол.
10) Дальнейшую проверку рулевого управления произвести визуально и органолептически согласно методике, приведенной во втором разделе на- стоящих методических указаний.
11) При обнаружении неисправностей в рулевом управлении, которые могут быть устранены регулировками, следует выполнить необходимые ре- гулировочные работы. Порядок регулировок большинства рулевых меха- низмов разбирается в разделе 1 данных методических указаний.
5.
Требования к отчету
Отчет должен содержать протокол испытаний с результатами измере- ний суммарного люфта в рулевом управлении , данные по органолептиче- ским и визуальным проверкам элементов рулевого управления. При напи- сании отчета необходимо придерживаться такой же последовательности из- ложения, как в табл. 2.1, при этом результаты работы лучше представить в табличной форме. Если в процессе выполнения работы выполнялись какие- то регулировки, то необходимо подробно описать это. По результатам про- ведения работы в конце отчета необходимо сделать выводы. Отчет выпол- няется на стандартных листах бумаги формата А-4 согласно общим требо- ваниям к оформлению текстовой технической документации.
6.
Контрольные вопросы
1. Что такое суммарный люфт в рулевом управлении согласно ГОСТ Р
51709–2001?
2. Порядок измерения суммарного люфта в рулевом управлении со- гласно ГОСТ Р 51709–2001 и ГОСТ 25478–91.
3. Принцип действия люфтомеров, фиксирующих поворот управляе- мых колес, и люфтомеров-динамометров.
4. Современные требования, предъявляемые к рулевым управлениям и методы их проверки.
5. Особенности регулировки реечных рулевых механизмов.

26 6. Особенности регулировки червячных рулевых механизмов.
7. Особенности регулировки винтовых рулевых механизмов.
Список рекомендуемой литературы
1. Автомобиль: Основы конструкции: Учеб. для вузов по специ- альности «Автомобили и автомобильное хозяйство» / Н.Н. Вишняков,
В.К. Вахламов, А.Н. Нарбут, И.С. Шлиппе, А.Н. Островцев. – 2-е изд., перераб. и доп. – М.: Машиностроение, 1986. – 304с.
2. Осепчугов В.В. Автомобиль: Анализ конструкций, элементы расчета: Учеб. для студентов вузов по специальности «Автомобили и автомобильное хозяйство»/В.В. Осепчугов, А.К. Фрумкин. – М.: Ма- шиностроение, 1989. – 304 с.
3. Михайловский Е.В. Устройство автомобиля: Учеб. для вузов /
Е.В. Михайловский, К.Б. Серебряков, Е.Я. Тур. – 5-е изд., перераб. и доп. – М.: Машиностроение, 1985. – 352с.
4. Техническая эксплуатация автомобилей: Учеб. для вузов. –
4-е изд., перераб. и доп./Под ред. Е.С. Кузнецова. – М.: Наука, 2001. –
535с.
5. ГОСТ Р 51709–2001. Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки. – М.: Гос- стандарт России, 2001. – 26с.

27
СОДЕРЖАНИЕ:
1. Назначение, принцип действия и особенности конструкций
рулевых управлений, применяемых на отечественных и
импортных автомобилях
1
1.1. Рулевые механизмы ................................................................................... 4 1.1.1. Зазоры в зацеплении рулевой пары.......................................................... 5 1.1.2. Шестеренные рулевые механизмы......................................................... 6 1.1.3. Червячные рулевые механизмы................................................................ 7 1.1.4. Винтовые рулевые механизмы................................................................. 9 1.1.5. Кривошипные рулевые механизмы........................................................ 12 1.1.6. Травмобезопасные рулевые механизмы................................................ 13
1.2. Рулевые приводы ...................................................................................... 16 1.2.1. Рулевая трапеция..................................................................................... 16 1.2.2. Поперечная тяга....................................................................................... 17 1.2.3. Продольная тяга....................................................................................... 17
2. Требования и методы проверки рулевого управления ........................ 19
3. Устройство и принцип действия оборудования, применяемого в
лабораторной работе ............................................................................... 22
4. Порядок выполнения работы ..................................................................... 24
5. Требования к отчету .................................................................................... 25
6. Контрольные вопросы ................................................................................. 26
7. Список рекомендуемой литературы ..............................................27

28
Составители
Александр Иванович Подгорный
Дмитрий Владимирович Цыганков
ДИАГНОСТИРОВАНИЕ И РЕГУЛИРОВКА РУЛЕВОГО УПРАВЛЕНИЯ
АВТОТРАНСПОРТНЫХ СРЕДСТВ
Методические указания к лабораторной работе по курсам
«Техническая эксплуатация транспортных средств» и «Техническая диагностика на транспорте» для студентов специальностей
150200 «Автомобили и автомобильное хозяйство» и 240400 «Организация и безопасность дорожного движения» дневной формы обучения
Редактор З.М. Савина
ИД № 06536 от 16.01.02
Подписано в печать 01.11.02. Формат 60х84/16.
Бумага офсетная. Отпечатано на ризографе. Уч.-изд. л. 2,00.
Тираж 280 экз. Заказ
ГУ Кузбасский государственный технический университет.
650026, Кемерово, ул. Весенняя, 28.
Типография ГУ Кузбасский государственный технический университет.
650099, Кемерово, ул. Д. Бедного, 4А.

ВАЗ-2114