Блог от said_t. Балансировка нагрузки для литий-ионных (Li-Ion) аккумуляторов электромобилей Балансир для зарядки металлгидридных аккумуляторов

Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.

Зачем нужен балансир при зарядке батареи? При последовательном соединении нескольких банок напряжение суммируется, и емкость батареи будет равна самой низкой, из всех элементов.

Чтобы не допустить перезаряда «ленивой» банки, ее нужно отключить от питания, как только на ней будет достигнуто зарядное напряжение. Это позволит другим элементам продолжить зарядку. Для выполнения контроля за равномерным зарядом служит балансир. Он должен быть включен в цепь с последовательным соединением элементов. Для параллельного соединения балансир не нужен, там уровень заряда распределяется равномерно, как в сообщающихся сосудах.

Плата балансира может быть выполнена отдельно или входить в общий защитный контур MBS для литиевых аккумуляторов. Называется сборка балансировочным шлейфом.

Целью внедрения схемы является недопущение перезаряда отдельных элементов. Если используется один и защищенный аккумулятор, в нем предусмотрен блок от перезаряда.

Плата защиты литиевого аккумулятора

Литиевые аккумуляторы при перезарядке, нагревании могут загореться или взорваться. При проседании напряжения возникают трудности с зарядкой. Каждый случай нарушения режима ведет к безвозвратной потере емкости банки. Поэтому любая сборка из литиевых аккумуляторов содержит защитную плату.

Если используются незащищенные элементы, контроллер заряда-разряда устанавливается непременно. РСВ-плата предусмотрена, как обязательный элемент во всех аккумуляторов для бытовых приборов.

РСВ –платы и РСМ-модули не являются контроллерами, они не регулируют ток и напряжение. Их задача – разорвать цепь, если случилось короткое замыкание, перегрев. Модули допускают разряд до 2,5 В, что опасно. Все модули защиты китайские, продукция выпускается миллионами и вряд ли тестируется каждая микросхема. Это не полноценная защита, аварийная.

Для защиты используют платы заряда и защиты MBS, подбираемые по удвоенной токовой нагрузке, со встроенным балансиром. Платы зарядки и защиты литиевых аккумуляторов представляют контроллеры, которые обеспечивают 2 этапа процесса и обеспечивают нужные параметры. Непременным условием второго этапа зарядки является отключение питания при достижении максимального рабочего напряжения литиевого аккумулятора.

Схемы плат защиты литиевого аккумулятора

Все литий-ионные и литий-полимерные аккумуляторы и собранные батареи должны иметь защиту. Чтобы провести зарядку в 2 этапа, необходимо обеспечить последовательно режим постоянного тока, постоянного напряжения. Используются в сборке РСМ или MBS платы.

Собрать самостоятельно или купить готовые платы для подключения, выбирать вам. Для зарядки литиевых аккумуляторов специалисты используют китайские изделия. Их заказывают на AliExpress, с бесплатной доставкой.

LM 317

Простое зарядное устройство, стабилизатор тока.

Настройка заключается в создании напряжения 4,2 В подстройкой резисторов R4, R6. Сопротивление R8 является подстроечным сопротивлением. Погасший светодиод известит об окончании процесса. Недостатком этого устройства считают невозможность запитки от порта USB. Высокое напряжение питания 8-12 В, условие работы этого ЗУ.

ТР4056

Специалисты предлагают, для зарядки литиевого аккумулятора воспользоваться китайской платой ТП4056, с защитой от переплюсовки батарей или без. Купить ее можно на АлиЭкспресс, стоимость единицы обходится примерно в 30 центов.

Максимальный ток в 1 А регулируется заменой резистора R3. Напряжение 5 А, имеется индикатор зарядки.

Этапы контроля:

  • постоянно, напряжение на аккумуляторе;
  • предзарядка, если на клеммах меньше 2,9В;
  • максимальный постоянный ток 1 А, при замене резистора, увеличении сопротивления, ток падает;
  • при напряжении 4,2 В начинается плавное снижение зарядного тока при постоянном напряжении;
  • При токе 0,1С зарядка отключается.

Специалисты советуют покупать плату с защитой или выведенным контактом для температурного датчика.

NCP 1835

Зарядная плата обеспечивает высокую стабильность зарядного напряжения при миниатюрном размере платы – 3х3 мм. Этим устройством обеспечивается зарядка литиевых аккумуляторов всех видов и размеров.

Особенности:

  • малое количество элементов;
  • заряжает сильно разряженные аккумуляторы током около 30 мА;
  • детектирует незаряжаемые батарейки, подает сигнал;
  • можно задать время заряда от 6 до 748 минут.

Видео

Посмотрите на видео полный обзор платы заряда ТП4056

Литиевые аккумулятор (Li-Io, Li-Po) являются самыми популярными на данный момент перезаряжаемыми источниками электрической энергии. Литиевый аккумулятор имеет номинальное напряжение 3.7 Вольт, именно оно указывается на корпусе. Однако, заряженный на 100% аккумулятор имеет напряжение 4.2 В, а разряженный “в ноль” – 2.5 В, вообще нет смысла разряжать аккумулятор ниже 3 В, во-первых, он от этого портится, во-вторых, в промежутке от 3 до 2.5 В аккумулятор отдаёт всего пару процентов энергии. Таким образом, рабочий диапазон напряжений принимаем 3 – 4.2 Вольта. Мою подборку советов по эксплуатации и хранению литиевых аккумуляторов вы можете посмотреть вот в этом видео

Есть два варианта соединения аккумуляторов, последовательное и параллельное.

При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.

В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.

Особенности зарядки аккумуляторов китайскими модулями

Стандартный покупной зарядно-защитный модуль за 20 рублей для литиевого аккумулятора (ссылка на Aliexpress )
(позиционируется продавцом как модуль для одной банки 18650) может и будет заряжать любой литиевый аккумулятор вне зависимости от формы, размера и емкости до правильного напряжения 4,2 вольта (напряжение полностью заряженного аккумулятора, под завязку). Даже если это огромный литиевый пакет на 8000mah (разумеется речь идет про одну ячейку на 3,6-3,7v). Модуль дает зарядный ток 1 ампер , это значит что им можно без опаски заряжать любой аккумулятор емкостью от 2000mah и выше (2Ah, значит зарядный ток – половина емкости, 1А) и соответственно время зарядки в часах будет равно емкости аккумулятора в амперах (на самом деле чуть больше, полтора-два часа на каждые 1000mah). Кстати аккумулятор можно подключать к нагрузке уже во время заряда.

Важно! Если вы хотите заряжать аккумулятор меньшей емкости (например одну старую банку на 900mah или крошечный литиевый пакетик на 230mah), то зарядный ток 1А это много, его следует уменьшить. Это делается заменой резистора R3 на модуле согласно приложенной таблице. Резистор необязательно smd, подойдет самый обычный. Напоминаю, что зарядный ток должен составлять половину от емкости аккумулятора (или меньше, не страшно).

Но если продавец говорит, что этот модуль для одной банки 18650, можно ли им заряжать две банки? Или три? Что если нужно собрать емкий пауэрбанк из нескольких аккумуляторов?
МОЖНО! Все литиевые аккумуляторы можно подключать параллельно (все плюсы к плюсам, все минусы к минусам) ВНЕ ЗАВИСИМОСТИ ОТ ЕМКОСТИ. Спаянные параллельно аккумуляторы сохраняют рабочее напряжение 4,2v а их емкость складывается. Даже если вы берете одну банку на 3400mah а вторую на 900 – получится 4300. Аккумуляторы будут работать как одно целое и разряжаться будут пропорциональной своей емкости.
Напряжение в ПАРАЛЛЕЛЬНОЙ сборке ВСЕГДА ОДИНАКОВО НА ВСЕХ АККУМУЛЯТОРАХ! И ни один аккумулятор физически не может разрядиться в сборке раньше других, здесь работает принцип сообщающихся сосудов. Те, кто утверждают обратное и говорят что аккумуляторы с меньшей емкостью разрядятся быстрее и умрут – путают с ПОСЛЕДОВАТЕЛЬНОЙ сборкой, плюйте им в лицо.
Важно! Перед подключением друг к другу все аккумуляторы должны иметь примерно одинаковое напряжение, чтобы в момент спаивания между ними не потекли уравнительные токи, они могут быть очень большими. Поэтому лучше всего перед сборкой просто зарядить каждый аккумулятор по отдельности. Разумеется время зарядки всей сборки будет увеличиваться, раз вы используете все тот же модуль на 1А. Но можно спараллелить два модуля, получив зарядный ток до 2А (если ваше зарядное устройство может столько дать). Для этого нужно соединить перемычками все аналогичные клеммы модулей (кроме Out- и B+, они продублированы на платах другими пятаками, уже и так окажутся соединенными). Либо можно купить модуль (ссылка на Aliexpress ), на котором микросхемы уже стоят в параллель. Этот модуль способен заряжать током в 3 Ампера.

Простите за совсем очевидные вещи, но люди по-прежнему путают, поэтому придется обсудить разницу между параллельным и последовательным соединением.
ПАРАЛЛЕЛЬНОЕ соединение (все плюсы к плюсам, все минусы к минусам) сохраняет напряжение аккумулятора 4,2 вольта, но увеличивает емкость, складывая все емкости вместе. Во всех пауэрбанках применяется параллельное соединение нескольких аккумуляторов. Такая сборка по-прежнему может заряжаться от USB и повышающим преобразователем напряжение поднимается до выходных 5v.
ПОСЛЕДОВАТЕЛЬНОЕ соединение (каждый плюс к минусу последующего аккумулятора) дает кратное увеличение напряжения одной заряженной банки 4,2в (2s – 8,4в, 3s – 12,6в и так далее), но емкость остается прежняя. Если используются три аккумулятора на 2000mah, то емкость сборки – 2000mah.
Важно! Считается что для последовательной сборки священно обязательно нужно использовать только аккумуляторы одинаковой емкости. На самом деле это не так. Можно использовать разные, но тогда емкость батареи будет определяться НАИМЕНЬШЕЙ емкостью в сборке. Складываете 3000+3000+800 – получаете сборку на 800mah. Тогда спецы начинают кукарекать, что тогда менее емкий аккумулятор будет быстрее разряжаться и умрет. А это неважно! Главное и действительно священное правило – для последовательной сборки всегда и обязательно нужно использовать плату защиты BMS на нужное количество банок. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. В случае с банкой на 800 она и разрядится, БМС отключит нагрузку от батареи, разряд остановится и остаточный заряд по 2200mah на остальных банках уже не будет иметь значения – нужно заряжаться.

Плата BMS в отличии от одинарного зарядного модуля НЕ ЯВЛЯЕТСЯ ЗАРЯДНЫМ УСТРОЙСТВОМ последовательной сборки. Для зарядки нужен настроенный источник нужного напряжения и тока . Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.

Можно ли заряжать последовательную сборку, соединив несколько одинарных зарядных модулей?
На самом деле при некоторых допущениях – можно. Для каких-то самоделок зарекомендовала себя схема с использованием одинарных модулей, соединенных также последовательно, но для КАЖДОГО модуля нужен СВОЙ ОТДЕЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ. Если заряжаете 3s – берёте три телефонных зарядки и подключаете каждую к одному модулю. При использовании одного источника – короткое замыкание по питанию , ничего не работает. Такая система также работает и как защита сборки (но модли способны отдавать не более 3 ампер) Либо же просто заряжайте сборку побаночно, подключая модуль к каждому аккумулятору до полного заряда.

Индикатор заряженности аккумулятора

Тоже насущная проблема – хотя бы примерно знать сколько процентов заряда остается на аккумуляторе, чтобы он не разрядился в самый ответственны момент.
Для параллельных сборок на 4,2 вольта самым очевидным решением будет сразу приобрести готовую плату пауэрбанка, на которой уже есть дисплей отображающий проценты заряда. Эти проценты не супер-точные, но всё же помогают. Цена вопроса примерно 150-200руб, все представлены на сайте Гайвера. Даже если вы собираете не пауэрбанк а что-то другое, плата эта довольно дешевая и небольшая, чтобы разместить ее в самоделке. Плюс она уже имеет функцию заряда и защиты аккумуляторов.
Есть готовые миниатюрные индикаторы на одну или несколько банок, 90-100р
Ну а самым дешевым и народным методом является использование повышающего преобразователя МТ3608 (30 руб.), настроенного на 5-5,1v. Собственно если вы делаете пауэрбанк на любом преобразователе на 5 вольт, то даже не нужно ничего докупать. Доработка заключается в установке красного или зеленого светодиода (другие цвета будут работать на другом выходном напряжении, от 6в и выше) через токоограничивающий резистор 200-500ом между выходной плюсовой клеммой (это будет плюс) и входной плюсовой (для светодиода это получится минус). Вы не ошиблись, между двумя плюсами! Дело в том, что при работе преобразователя между плюсами создается разница напряжения, +4,2 и +5в дают между собой напряжение 0,8в. При разряде аккумулятора его напряжение будет падать, а выходное с преобразователя всегда стабильно, значит разница будет увеличиваться. И при напряжении на банке 3,2-3,4в разница достигнет необходимой величины, чтобы зажечь светодиод – он начинает показывать, что пора заряжаться.

Чем измерять емкость аккумуляторов?

Мы уже привыкли в мнению, что для замера нужен Аймакс b6, а он стоит денег и для большинства радиолюбителей избыточен. Но есть способ замерить емкость 1-2-3баночного аккумулятора с достаточной точностью и дешево – простой USB-тестер.

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о двух простеньких платках, предназначенных для контроля за сборками Li-Ion аккумуляторов, именуемые BMS. В обзоре будет тестирование, а также несколько вариантов переделки шуруповерта под литий на основе этих плат или подобных. Кому интересно, милости прошу под кат.
Update 1, Добавлен тест рабочего тока плат и небольшое видео по красной плате
Update 2, Поскольку тема вызвала небольшой интерес, поэтому постараюсь дополнить обзор еще несколькими способами переделки шурика, чтобы получился некий простенький FAQ

Общий вид:


Краткие ТТХ плат:


Примечание:

Сразу же хочу предупредить – с балансиром только синяя плата, красная без балансира, т.е. это чисто плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока. А также вопреки некоторым убеждениям ни одна из них не имеет контроллера заряда (CC/CV), поэтому для их работы необходима специальная платка с фиксированным напряжение и ограничением тока.

Габариты плат:

Размеры плат совсем небольшие, всего 56мм*21мм у синей и 50мм*22мм у красной:




Вот сравнение с аккумуляторами АА и 18650:


Внешний вид:

Начнем с :


При более детальном рассмотрении можно увидеть контроллер защиты – S8254AA и компоненты балансировки для 3S сборки:


К сожалению, рабочий ток по заявлению продавца всего 8А, но судя по даташитам один мосфет AO4407A рассчитан на 12А (пиковый 60А), а у нас их два:

Еще отмечу, что ток балансировки совсем небольшой (около 40ma) и активируется балансировка, как только все ячейки/банки перейдут в режим CV (вторая фаза заряда).
Подключение:


попроще, ибо не имеет балансира:


Она также выполнена на основе контроллера защиты – S8254AA, но рассчитана на более высокий рабочий ток в 15А (опять же по заявлениям производителя):


Ходя по даташитам на используемые силовые мосфеты, рабочий ток заявлен 70А, а пиковый 200А, хватит даже одного мосфета, а у нас их два:

Подключение аналогичное:


Итого, как мы видим, на обеих платах присутствует контроллер защиты с необходимой развязкой, силовые мосфеты и шунты для контроля проходящего тока, но в синей есть еще и встроенный балансир. Я особо не вникал в схему, но похоже, что силовые мосфеты запараллелены, поэтому рабочие токи можно умножать на два. Важное примечание - максимальные рабочие токи ограничиваются токовыми шунтами! Про алгоритм заряда (CC/CV) эти платки не знают. В подтверждение тому, что это именно платы защиты, можно судить по даташиту на контроллер S8254AA, в котором о зарядном модуле ни слова:


Сам контроллер рассчитан на 4S соединение, поэтому с некоторой доработкой (судя по даташиту) – подпайкой кондера и резистора, возможно, заработает красная платка:


Синюю платку так просто доработать до 4S не получится, придется допаивать элементы балансира.

Тестирование плат:

Итак, переходим к самому главному, а именно к тому, насколько они пригодны для реального применения. Для тестирования нам помогут следующие приспособления:
- сборный модуль (три трех/четырехрегистровых вольтметра и холдер для трех 18650 аккумуляторов), который мелькал в моем обзоре зарядника , правда, уже без балансировочного хвостика:


- двухрегистровый ампервольтметр для контроля тока (нижние показания прибора):


- понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития:


- зарядно-балансировочное устройство iCharger 208B для разряда всей сборки

Стенд простой - плата преобразователь подает фиксированное постоянное напряжение 12,6V и ограничивает зарядный ток. По вольтметрам смотрим, на каком напряжении срабатывают платы и как отбалансированы банки.
Для начала посмотрим главную фишку синей платы, а именно балансировку. На фото 3 банки, заряженные на 4,15V/4,18V/4,08V. Как видим – разбалансировка. Подаем напряжение, зарядный ток постепенно падает (нижний приборчик):


Поскольку платка не имеет каких-либо индикаторов, то окончание балансировки можно оценить только на глаз. Амперметр за час с лишним до окончания уже показывал по нулям. Кому интересно, вот небольшой ролик о том, как работает балансир в этой плате:


В итоге банки отбалансированы на уровне 4,210V/4,212V/4,206V, что весьма неплохо:


При подаче напряжения чуть большего 12,6V, как я понял, балансир неактивен и как-только напряжение на одной из банок достигнет 4,25V, то контроллер защиты S8254AA отключает заряд:


Такая же ситуация и с красной платой, контроллер защиты S8254AA отключает заряд также на уровне 4,25V:


Теперь пройдемся по отсечке при нагрузке. Разряжать буду, как уже упоминал выше, зарядно-балансировочным устройством iCharger 208B в режиме 3S током 0,5А (для более точных замеров). Поскольку мне не очень хочется ждать разряда всей батареи, поэтому я взял один разряженный аккумулятор (на фото зеленый Самсон INR18650-25R).
Синяя плата отключает нагрузку, как только напряжение на одной из банок достигнет 2,7V. На фото (без нагрузки->перед отключением->окончание):


Как видим, ровно на 2,7V плата отключает нагрузку (продавец заявлял 2,8V). Как мне кажется, немного высоковато, особенно если учитывать тот факт, что в тех же шуруповертах нагрузки огромные, следовательно, и просадка напряжения большая. Все же желательно в таких приборах иметь отсечку под 2,4-2,5V.
Красная плата, наоборот, отключает нагрузку, как только напряжение на одной из банок достигнет 2,5V. На фото (без нагрузки->перед отключением->окончание):


Вот здесь вообще все отлично, но нет балансира.

Update 1: Тест нагрузки:
По току отдачи нам поможет следующий стенд:
- все тот же холдер/держатель для трех 18650 аккумуляторов
- 4-х регистровый вольтметр (контроль общего напряжения)
- автомобильные лампы накаливания в качестве нагрузки (к сожалению, у меня всего 4 лампы накаливания по 65W, больше не имею)
- мультиметр HoldPeak HP-890CN для измерения токов (макс 20А)
- качественные медные многожильные акустические провода большого сечения

Пару слов о стенде: аккумуляторы соединены «вальтом», т.е. как бы друг за другом, для уменьшения длины соединительных проводов, а следовательно и падения напряжения на них при нагрузке будет минимальным:


Соединение банок на холдере («вальтом»):


В качестве щупов для мультиметра выступили качественные провода с крокодилами от зарядно-балансировочного устройства iCharger 208B, ибо HoldPeak’овские не внушают доверие, да и лишние соединения будут вносить дополнительные искажения.
Для начала потестим красную плату защиты, как самую интересную в плане токовой нагрузки. Припаяем силовые и побаночные провода:


Получается что-то типа этого (нагрузочные соединения получились минимальной длины):


Я уже упоминал в разделе о переделке шурика о том, что подобные холдеры не очень предназначены для таких токов, но для тестов пойдет.
Итак, стенд на основе красной платки (по замерам не более 15А):


Коротко поясню: плата держит 15А, но у меня нет подходящей нагрузки, чтобы вписаться в этот ток, поскольку четвертая лампа добавляет еще около 4,5-5А, а это уже за пределами платки. При 12,6А силовые мосфеты теплые, но не горячие, самое то для продолжительной работы. При токах более 15А плата уходит в защиту. Я замерял с резисторами, они добавляли пару ампер, но стенд уже разобран.
Огромный плюс красной платы – нет блокировки защиты. Т.е. при срабатывании защиты ее не нужно активировать подачей напряжения на выходные контакты. Вот небольшой видеоролик:


Немного поясню. Поскольку лампы накаливания в холодном виде имеют низкое сопротивление, да к тому же еще включены параллельно, то платка думает, что произошло короткое замыкание и срабатывает защита. Но благодаря тому, что у платы нет блокировки, можно немного разогреть спиральки, сделав более «мягкий» старт.

Синяя платка держит больший ток, но на токах более 10А силовые мосфеты сильно греются. На 15А платка выдержит не более минуты, ибо через 10-15 секунд палец уже не держит температуру. Благо остывают быстро, поэтому для кратковременной нагрузки вполне подойдут. Все бы ничего, но при срабатывании защиты плата блокируется и для разблокировки необходимо подавать напряжение на выходные контакты. Это вариант явно не для шуруповерта. Итого, ток в 16А держит, но мосфеты очень сильно греются:


Вывод: лично мое мнение таково, что для электроинструмента отлично подойдет обычная плата защиты без балансира (красная). Она имеет высокие рабочие токи, оптимальное напряжение отсечки в 2,5V, да и легко дорабатывается до конфигурации 4S (14,4V/16,8V). Я считаю – это самый оптимальный выбор для переделки бюджетного шурика под литий.
Теперь по синей платке. Из плюсов – наличие балансировки, но рабочие токи все же небольшие, 12А (24А) это для шурика с крутящим моментом 15-25Нм несколько маловато, особенно когда патрон уже почти стопорит при затяжке самореза. Да и напряжение отсечки всего 2,7V, а это значит, что при сильной нагрузке часть емкости батареи останется невостребованной, поскольку на высоких токах просадка напряжения на банках приличная, да и они рассчитаны на 2,5V. И самый большой минус – плата при сработке защиты блокируется, поэтому применение в шуруповерте нежелательно. Синюю платку лучше использовать в каких-нибудь самоделках, но это опять же, лично мое мнение.

Возможные схемы применения или как переделать питание шурика на литий:

Итак, как же можно переделать питание любимого шурика с NiCd на Li-Ion/Li-Pol? Эта тема уже достаточно заезжена и решения, в принципе, найдены, но я вкратце повторюсь.
Для начала скажу лишь одно – в бюджетных шуриках стоит лишь плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока (аналог обозреваемой красной платы). Никакой балансировки там нет. Более того, даже в некоторых брендовых электроинструментах нет балансировки. Это же относится ко всем инструментам, где есть гордые надписи «Зарядка за 30 минут». Да, они заряжаются за полчаса, но отключение происходит тогда, как только напряжение на одной из банок достигнет номинала или сработает плата защиты. Не трудно догадаться, что банки будут заряжены не полностью, но разница всего 5-10%, поэтому не столь важно. Главное запомнить, заряд с балансировкой идет, как минимум, несколько часов. Поэтому возникает вопрос, а оно вам надо?

Итак, самый распространенный вариант выглядит так:
Сетевое ЗУ со стабилизированным выходом 12,6V и ограничением тока (1-2А) -> плата защиты ->
В итоге: дешево, быстро, приемлемо, надежно. Балансировка гуляет в зависимости от состояния банок (емкость и внутреннее сопротивление). Вполне рабочий вариант, но через некоторое время разбалансировка даст о себе знать по времени работы.

Более правильный вариант:
Сетевое ЗУ со стабилизированным выходом 12,6V, ограничением тока (1-2А) -> плата защиты с балансировкой -> 3 последовательно соединенных аккумулятора
В итоге: дорого, быстро/медленно, качественно, надежно. Балансировка в норме, емкость батареи максимальная

Итого, будем стараться сделать наподобие второго варианта, вот как можно сделать:
1) Li-Ion/Li-Pol аккумуляторы, платы защиты и специализированное зарядно-балансировочное устройство (iCharger, iMax). Дополнительно придется вывести балансировочный разъем. Минусов всего два – модельные зарядники недешевые, да и обслуживать не очень удобно. Плюсы – высокий ток заряда, высокий ток балансировки банок
2) Li-Ion/Li-Pol аккумуляторы, плата защиты с балансировкой, DC преобразователь с токоограничением, БП
3) Li-Ion/Li-Pol аккумуляторы, плата защиты без балансировки (красная), DC преобразователь с токоограничением, БП. Из минусов только то, что со временем появится разбалансировка банок. Для минимизации разбалансировки, перед переделкой шурика необходимо подогнать напряжение к одному уровню и желательно брать банки из одной партии

Первый вариант сгодится только тем, кто имеет модельное ЗУ, но мне кажется, если им нужно было, то они уже давным давно переделали свой шурик. Второй и третий варианты практически одинаковые и имеют право на жизнь. Необходимо лишь выбрать, что важнее – скорость или емкость. Я считаю, что самый оптимальный вариант – последний, но только раз в несколько месяцев нужно балансировать банки.

Итак, хватит болтовни, переходим к переделке. Поскольку я не имею шурика на NiCd аккумах, поэтому о переделке только на словах. Нам будет нужно:

1) Источник питания:

Первый вариант. Блок питания (БП), как минимум, на 14V или больше. Ток отдачи желателен не менее 1А (в идеале около 2-3А). Нам подойдет блок питания от ноутбуков/нетбуков, от зарядных устройств (выход более 14V), блоки для питания светодиодных лент, видеозаписывающей аппаратуры (DIY БП), например или :


- Понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития, например или :


- Второй вариант. Готовые блоки питания для шуриков с токоограничением и выходом 12,6V. Стоят недешево, как пример из моего обзора шуруповерта MNT - :


- Третий вариант. :


2) Плата защиты с балансиром или без оного. То току желательно брать с запасом:


Если использоваться будет вариант без балансира, то необходимо подпаять балансировочный разъем. Это нужно для контроля напряжения на банках, т.е. для оценки разбалансировки. И как вы понимаете, нужно будет периодически дозаряжать батарею побаночно простым зарядным модулем TP4056, если началась разбалансировка. Т.е. раз в несколько месяцев, берем платку TP4056 и заряжаем поочереди все банки, которые по окончании заряда имеют напряжение ниже 4,18V. Данный модуль корректно отрубает заряд на фиксированном напряжении 4,2V. Данная процедура займет час-полтора, зато банки будут более-менее отбалансированы.
Написано немного сумбурно, но для тех, кто в танке:
Через пару месяцев ставим на зарядку батарею шуруповерта. По окончании заряда достаем балансировочный хвостик и меряем напряжение на банках. Если получается что-то вроде этого – 4,20V/4,18V/4,19V, то балансировка, в принципе не нужна. Но если картина следующая – 4,20V/4,06V/4,14V, то берем модуль TP4056 и дозаряжаем поочереди две банки до 4,2V. Другого варианта, кроме специализированных зарядников-балансиров я не вижу.

3) Высокотоковые аккумуляторы:


Я уже ранее писал пару небольших обзоров о некоторых из них – и . Вот основные модели высокотоковых 18650 Li-Ion аккумуляторов:
- Sanyo UR18650W2 1500mah (20А макс.)
- Sanyo UR18650RX 2000mah (20А макс.)
- Sanyo UR18650NSX 2500mah (20А макс.)
- Samsung INR18650-15L 1500mah (18А макс.)
- Samsung INR18650-20R 2000mah (22А макс.)
- Samsung INR18650-25R 2500mah (20А макс.)
- Samsung INR18650-30Q 3000mah (15А макс.)
- LG INR18650HB6 1500mah (30А макс.)
- LG INR18650HD2 2000mah (25А макс.)
- LG INR18650HD2C 2100mah (20А макс.)
- LG INR18650HE2 2500mah (20А макс.)
- LG INR18650HE4 2500mah (20А макс.)
- LG INR18650HG2 3000mah (20А макс.)
- SONY US18650VTC3 1600mah (30А макс.)
- SONY US18650VTC4 2100mah (30А макс.)
- SONY US18650VTC5 2600mah (30А макс.)

Я рекомендую проверенные временем дешевенькие Samsung INR18650-25R 2500mah (20А макс.), Samsung INR18650-30Q 3000mah (15А макс.) или LG INR18650HG2 3000mah (20А макс.). С другими баночками особо не сталкивался, но лично мой выбор - Samsung INR18650-30Q 3000mah. У Лыж был небольшой технологический дефект и начали появляться фейки с заниженной токоотдачей. Статью о том, как отличить фейк от оригинала могу скинуть, но чуть позже, нужно поискать ее.

Как все это хозяйство соединить:


Ну и пару слов о соединении. Используем качественные медные многожильные провода приличного сечения. Это качественные акустические или обычные ШВВП/ПВС сечением 0,5 или 0,75 мм2 из хозмага (вспарываем изоляцию и получаем качественные проводочки разного цвета). Длина соединительных проводников должна быть минимальной. Аккумуляторы, желательны из одной партии. Перед их соединением желательно зарядить их до одного напряжения, чтобы как можно дольше не было разбалансировки. Пайка аккумуляторов не представляет ничего сложного. Главное иметь мощный паяльник (60-80Вт) и активный флюс (паяльная кислота, например). Паяется на ура. Главное потом протереть место пайки спиртом или ацетоном. Сами аккумуляторы размещаются в батарейном отсеке от старых NiCd банок. Располагать лучше треугольником, минус к плюсу или как в народе «вальтом», по аналогии с этим (один аккум будет расположен наоборот), либо чуть выше хорошее пояснение (в разделе тестирование):


Так, соединяющие аккумуляторы провода, получатся короткими, следовательно, падение драгоценного напряжения в них под нагрузкой будет минимальным. Использовать холдеры на 3-4 аккумулятора не рекомендую, не для таких токов они предназначены. Побаночные и балансировочные проводники не так важны и могут быть меньшего сечения. В идеале, аккумы и плату защиты лучше запихать в батарейный отсек, а понижающий DC преобразователь отдельно в док станцию. Светодиодные индикаторы заряд/заряжено можно заменить своими и вывести на корпус докстанции. При желании можно добавить в батарейный модуль минивольтметр, но это лишние деньги, ибо общее напряжение на АКБ только косвенно скажет об остаточной емкости. Но если есть желание, почему бы и нет. Вот :

Теперь прикинем по ценам:
1) БП – от 5 до 7 долларов
2) DC/DC преобразователь – от 2 до 4 долларов
3) Платы защиты - от 5 до 6 долларов
4) Аккумуляторы – от 9 до 12 долларов (3-4$ штучка)

Итого, в среднем 15-20$ за переделку (со скидками/купонами), либо 25$ без оных.

Update 2, еще несколько способов переделки шурика:

Следующий вариант (подсказали по комментам, спасибо I_R_O и cartmannn ):
Использовать недорогие 2S-3S зарядные устройства типа (это производитель того же iMax B6) или всевозможные копии B3/B3 AC/imax RC B3 () или ()
Оригинальный SkyRC e3 имеет зарядный ток на каждую банку 1,2А против 0,8А у копий, должен быть точен и надежен, но в два раза дороже копий. Совсем недорого можно купить на том же . Как я понял по описанию, он имеет 3 независимых зарядных модуля, что-то сродни 3 модулей TP4056. Т.е. SkyRC e3 и его копии не имеют балансировки как таковой, а просто заряжают банки до одного значения напряжения (4,2V) одновременно, поскольку у них не выведены силовые разъемы. В ассортименте SkyRC есть действительно зарядно-балансировочные устройства, например, но ток балансировки всего 200ma и стоит уже в районе 15-20 долларов, зато умеет заряжать лифешки (LiFeP04) и токи заряда до 3А. Кому интересно, могут ознакомиться с модельным рядом .
Итого, для данного варианта необходимо любое из вышеперечисленных 2S-3S зарядных устройств, красная или аналогичная (без балансировки) плата защиты и высокотоковые аккумуляторы:


Как по мне, очень хороший и экономичный вариант, наверно, я бы остановился на нем.

Еще один вариант, предложенный камрадом Volosaty :
Использовать так называемый «Чешский балансир»:

Где он продается лучше спросить у него, я первый раз о нем услышал, :-). По токам ничего не подскажу, но судя по описанию, ему необходим источник питания, поэтому вариант не такой бюджетный, но вроде как интересный в плане зарядного тока. Вот ссылка на . Итого, для данного варианта необходимы: источник питания, красная или аналогичная (без балансировки) плата защиты, «чешский балансир» и высокотоковые аккумуляторы.

Преимущества:
Я уже ранее упоминал о преимуществах литиевых источников питания (Li-Ion/Li-Pol) над никелевыми (NiCd). В нашем случае сравнение лицом к лицу – типичная батарея шурика из NiCd аккумов против литиевой:
+ высокая плотность энергии. У типичной никелевой батареи 12S 14,4V 1300mah запасенная энергия 14,4*1,3=18,72Wh, а у литиевой батареи 4S 18650 14,4V 3000mah - 14,4*3=43,2Wh
+ отсутствие эффекта памяти, т.е. можно заряжать их в любой момент, не дожидаясь полного разряда
+ меньшие габариты и вес при одинаковых параметрах с NiCd
+ быстрое время заряда (не боятся больших токов заряда) и понятная индикация
+ низкий саморазряд

Из минусов Li-Ion можно отметить только:
- низкая морозостойкость аккумуляторов (боятся отрицательных температур)
- требуется балансировка банок при заряде и наличие защиты от переразряда
Как видим, преимущества лития налицо, поэтому зачастую имеет смысл переделки питания…
+173 +366

Обычно в любой системе, состоящей из нескольких последовательно включенных батарей, возникает проблема разбалансировки заряда отдельных батарей. Выравнивание заряда - это метод проектирования, позволяющий увеличить безопасность эксплуатации батарей, время работы без подзарядки и срок службы.Новейшие микросхемы защиты батарей и указатели заряда компании Texas Instruments - BQ2084, семейства BQ20ZXX, BQ77PL900 и BQ78PL114, представленные в производственной линейке компании, - необходимы для реализации этого метода.

ЧТО ТАКОЕ РАЗБАЛАНСИРОВКА БАТАРЕЙ?

Перегрев или перезаряд ускоряют износ батареи и могут вызвать воспламенение или даже взрыв. Программно-аппаратные средства защиты уменьшают опасность. В блоке из многих батарей, включенных последовательно (обычно такие блоки применяются в лаптопах и медицинском оборудовании) существует возможность разбалансировки батарей, что ведет к их медленной, но неуклонной деградации.
Не существует двух одинаковых батарей, всегда есть небольшие отличия в состоянии заряда батарей (СЗБ), саморазряда, емкости, сопротивлении и температурных характеристиках, даже если речь идет о батареях одинаковых типов, от одного производителя и даже из одной производственной партии. При формировании блока из нескольких батарей производитель обычно подбирает схожие по СЗБ батареи посредством сравнения напряжений на них. Однако отличия в параметрах отдельных батарей все равно остаются, а со временем могут и возрасти. Большинство зарядных устройств определяет полный заряд по суммарному напряжению всей цепочки последовательно включенных батарей. Поэтому напряжение заряда отдельных батарей может варьироваться в широких пределах, но не превышать порогового значения напряжения, при котором включается защита от перезаряда. Однако в слабом звене - батарее с малой емкостью или большим внутренним сопротивлением напряжение может быть выше, чем на остальных полностью заряженных батареях. Дефектность такой батареи проявится позже при длительном цикле разряда. Высокое напряжение такой батареи после завершения заряда свидетельствует об ее ускоренной деградации. При разряде по тем же причинам (большое внутренне сопротивление и малая емкость) на этой батарее будет наименьшее напряжение. Сказанное означает, что при заряде на слабой батарее может сработать защита от перенапряжения, в то время как остальные батареи блока еще не будут заряжены полностью. Это приведет к недоиспользованию ресурсов батарей.

МЕТОДЫ БАЛАНСИРОВКИ

Разбалансировка батарей оказывает существенное нежелательное воздействие на время работы без подзарядки и срок службы. Выравнивание напряжения и СЗБ батарей лучше всего производить при их полном заряде. Существуют два метода балансировки батарей - активный и пассивный. Последний иногда называют «резисторной балансировкой». Пассивный метод довольно прост: разряд батарей, нуждающихся в балансировке, производят через байпасные цепи, рассеивающие мощность. Эти байпасные цепочки могут быть интегрированы в батарейный блок или помещаться во внешней микросхеме. Такой метод предпочтительно использовать в недорогих приложениях. Практически вся избыточная энергия от батарей с большим зарядом рассеивается в виде тепла - это главный недостаток пассивного метода, т.к. он сокращает время работы батарей без подзарядки. В активном методе балансировки для передачи энергии от батарей с большим зарядом к менее заряженным батареям используются индуктивности или емкости, потери энергии в которых незначительны. Поэтому активный метод существенно более эффективен, нежели пассивный. Конечно, за повышение эффективности приходится платить - использовать дополнительные относительно дорогостоящие компоненты.

ПАССИВНЫЙ МЕТОД БАЛАНСИРОВКИ

Наиболее простое решение - выравнивание напряжения батарей. Например, микросхема BQ77PL900, обеспечивающая защиту батарейных блоков с 5-10 последовательно включенными батареями, используется в инструментах без токопроводящего кабеля, скутерах, бесперебойных источниках питания и медицинском оборудовании. Микросхема представляет собой функционально законченный узел и может применяться для работы с батарейным отсеком, как показано на рисунке 1. Сравнивая напряжение батарей с запрограммированными порогами, микросхема при необходимости включает режим балансировки. На рисунке 2 показан принцип действия. Если напряжение какой-либо батареи превышает заданный порог, заряд прекращается, подключаются байпасные цепочки. Заряд не возобновляется до тех пор, пока напряжение батареи ни снизится ниже порогового и процедура балансировки прекратится.

Рис. 1. Микросхема BQ77PL900, используемая в автономном
режиме работы для защиты блока батарей

При применении алгоритма балансировки, использующего в качестве критерия только отклонение напряжения, возможна неполная балансировка из-за разности внутреннего импеданса батарей (см. рис. 3). Дело в том, что внутренний импеданс вносит свой вклад в разброс напряжений при заряде. Микросхема защиты батарей не может определить, чем вызвана разбалансировка напряжений: разной емкостью батарей или различием их внутренних сопротивлений. Поэтому при таком типе пассивной балансировки нет гарантии, что все батареи окажутся на 100% заряженными. В микросхеме указателя заряда BQ2084 используется улучшенная версия балансировки, основанная на изменении напряжения. Чтобы минимизировать эффект разброса внутренних сопротивлений BQ2084 осуществляет балансировку ближе к окончанию процесса заряда, когда величина зарядного тока невелика. Другое преимущество BQ2084 - измерение и анализ напряжения всех батарей, входящих в блок. Однако в любом случае этот метод применим лишь в режиме зарядки.


Рис. 2. Пассивный метод, основанный на балансировке по напряжению

Рис. 3. Пассивный метод балансировки по напряжению
неэффективно использует емкость батарей

Микросхемы семейства BQ20ZXX, используют для определения уровня заряда фирменную технологию Impedance Track, базирующуюся на определении СЗБ и емкости батареи. В этой технологии для каждой батареи вычисляется заряд Q NEED , необходимый для достижения полностью заряженного состояния, после чего находится разница ΔQ между Q NEED всех батарей. Затем микросхема включает силовые ключи, через которые происходит балансировка батареи до состояния ΔQ = 0. Вследствие того, что разность внутренних сопротивлений батарей не оказывает влияния на этот метод, он может применяться в любое время: и при зарядке, и при разрядке батарей. При использовании технологии Impedance Track достигается более точная балансировка батарей (см. рис. 4).

Рис. 4.

АКТИВНАЯ БАЛАНСИРОВКА

По энергоэффективности этот метод превосходит пассивную балансировку, т.к. для передачи энергии от более заряженной батареи к менее заряженной вместо резисторов используются индуктивности и емкости, потери энергии в которых практически отсутствуют. Этот метод предпочтителен в случаях, когда требуется обеспечить максимальное время работы без подзарядки.
Микросхема BQ78PL114, произведенная по фирменной технологии PowerPump, представляет собой новейший компонент компании TI для активной балансировки батарей и использует индуктивный преобразователь для передачи энергии. PowerPump использует n-канальный p-канальный MOSFET и дроссель, который расположен между парой батарей. Схема показана на рисунке 5. MOSFET и дроссель составляют промежуточный понижающий/повышающий преобразователь. Если BQ78PL114 определяет, что верхней батарее нужно передать энергию в нижнюю, на выводе PS3 формируется сигнал частотой около 200 кГц с коэффициентом заполнения около 30%. Когда ключ Q1 открыт, энергия из верхней батареи запасается в дросселе. Когда ключ Q1 закрывается, энергия, запасенная в дросселе, через обратный диод ключа Q2 поступает в нижнюю батарею.

Рис. 5.

Потери энергии при этом невелики и в основном происходят в диоде и дросселе. Микросхема BQ78PL114 реализует три алгоритма балансировки:

  • по напряжению на выводах батареи. Этот метод похож на пассивный метод балансировки, описанный выше;
  • по напряжению холостого хода. В этом методе компенсируется различие во внутренних сопротивлениях батарей;
  • по СЗБ (основан на прогнозировании состояния батареи). Метод схож с тем, который использован в семействе микросхем BQ20ZXX при пассивной балансировке по СЗБ и емкости батареи. В этом случае точно определяется заряд, который необходимо передать от одной батареи к другой. Балансировка происходит в конце заряда. При использовании этого метода достигается наилучший результат (см. рис. 6)

Рис. 6.

Из-за больших токов балансировки технология PowerPump гораздо более эффективна, чем обычная пассивная балансировка с внутренними байпасными ключами. В случае балансировки батарейного блока ноутбука токи балансировки составляют 25…50 мА. Подбирая значение компонентов можно достичь эффективности балансировки в 12-20 раз лучшей, чем при пассивном методе с внутренними ключами. Типичного значения разбалансировки (менее чем 5%) можно достичь за один или два цикла.
Кроме того, технология PowerPump имеет и другие очевидные преимущества: балансировка может происходить при любом режиме работы - заряд, разряд и даже тогда, когда батарея, отдающая энергию, имеет меньшее напряжение, чем батарея, получающая энергию. По сравнению с пассивным методом теряется гораздо меньше энергии.

ОБСУЖДЕНИЕ ЭФФЕКТИВНОСТИ АКТИВНОГО И ПАССИВНОГО МЕТОДА БАЛАНСИРОВКИ

Технология PowerPump быстрее производит балансировку. При разбалансировке 2% батарей емкостью 2200 мА·ч она может быть произведена за один или два цикла. При пассивной балансировке встроенные в батарейный блок силовые ключи ограничивают максимальное значение тока, поэтому может потребоваться много больше циклов балансировки. Процесс балансировки может быть даже прерван при большой разнице параметров батарей.
Увеличить скорость пассивной балансировки можно за счет использования внешних компонентов. На рисунке 7 приведен типичный пример такого решения, которое можно использовать совместно с микросхемами BQ77PL900, BQ2084 или семейства BQ20ZXX. Вначале включается внутренний ключ батареи, который создает небольшой ток смещения, протекающий через резисторы R Ext1 и R Ext2 , включенные между выводами батареи и микросхемой. Напряжение «затвор-исток» на резисторе RExt2 включает внешний ключ, и ток балансировки начинает протекать через открытый внешний ключ и резистор R Bal .

Рис. 7. Принципиальная схема пассивной балансировки
с использованием внешних компонентов

Недостаток этого метода заключается в том, что одновременно не может происходить балансировка смежной батареи (см. рис. 8а). Это происходит из-за того, что когда открыт внутренний ключ смежной батареи, через резистор R Ext2 не может протекать ток. Поэтому ключ Q1 остается закрытым даже тогда, когда открыт внутренний ключ. На практике эта проблема не имеет большого значения, т.к. при таком способе балансировки батарея, подключенная к Q2 быстро балансируется, а следом за ней балансируется и батарея, подключенная к ключу Q2.
Другая проблема заключается в возникновении высокого напряжения сток-исток V DS , которое может возникнуть когда балансируется каждая вторая батарея. На рисунке 8б показан случай, когда балансируются верхняя и нижняя батареи. При этом напряжение V DS среднего ключа может превысить максимально допустимое. Решение этой проблемы - ограничение максимального значения резистора R Ext или исключение возможности одновременной балансировки каждой второй батареи.

Метод быстрой балансировки - новый путь улучшения безопасности эксплуатации батарей. При пассивной балансировке цель заключается в том, чтобы сбалансировать емкость батарей, но из-за малых токов балансировки это возможно лишь в конце цикла заряда. Другими словами, перезаряд плохой батареи может быть предотвращен, но это не увеличит время непрерывной работы без подзаряда, т.к. слишком много энергии будет потеряно в байпасных резистивных цепочках.
При использовании технологии активной балансировки PowerPump одновременно достигаются две цели - балансировка емкости в конце цикла заряда и минимальное различие напряжений в конце цикла разряда. Энергия запасается и отдается слабой батарее, а не рассеивается в виде тепла в байпасных цепях.

ЗАКЛЮЧЕНИЕ

Корректная балансировка напряжения батарей - один из путей увеличения безопасности эксплуатации батарей и увеличения срока их службы. Новые технологии балансировки отслеживают состояние каждой батареи, что позволяет увеличить срок их службы и повысить безопасность эксплуатации. Технология быстрой активной балансировки PowerPump увеличивает время работы без подзарядки, а также позволяет максимально и с высокой эффективностью сбалансировать батареи в конце цикла разряда.

Зачем вообще нужны балансиры для 12-ти вольтовые АКБ? Когда у вас система на 12 вольт, то все АКБ сколько бы их небыло в параллельном соединении, и у них всегда одинаковое напряжение. Но когда мы переходим на 24 или 48 вольт, то появляется проблема с разным напряжением на последовательно соединённых аккумуляторах. Из-за этого при заряде некоторые акб уходят в перезаряд и начинают "закипать", а другие недозаряжаются, и в итоге вся цепочка АКБ быстро теряет ёмкость и в общем приходит в негодность.

И даже полностью одинаковые АКБ со временем всё равно разбегаются по напряжению, по-этому не спасёт от проблемы даже купленные АКБ из одной партии. Для решения этой проблемы давно применяются различные балансировочные устройства, это или отдельные балансиры на каждый АКБ, или блоки на 24 и 48 вольт. Балансиры позволяют значительно продлить срок службы АКБ.

Я сам в скором будущем буду переходить на 24 вольта, так-как токи в системе стали уже большими и мне тоже понадобятся балансиры. В поисках я нашёл несколько вариантов различных по возможностям, цене и принципу работы, и ниже я сделаю обзор на эти балансировочные устройства.

VICTRON BATTERY BALANCER аккумуляторный балансир

Первым мне попались вот такие балансиры (фото ниже). Это судя по описанию активные балансиры с током балансировки 0.7А. Активные это значит что энергия с более заряженного АКБ переливается в менее заряженный, а не просто сжигается на сопротивлении. Но до конца я в этом не уверен так как описания на разных сайтах разнятся. Этот балансир для двух АКБ, то-есть на 24 вольта, с добавлением АКБ количество балансиров нужно увеличивать. На 48 вольт нужно уже три таких балансира.

Этот балансир не имеет возможности настройки под различные типы свинцовых аккумуляторов. Есть индикация работы, и реле тревоги, оно замыкается если на акб различие по напряжению превышает 0.2 вольта. Цена на этот балансир просто убила, на момент написания статьи цена на сайте была 6220 рублей . На 48 вольт их надо три штуки и в общем нужно отдать 18660 рублей плюс доставка.

Схема подключения этих балансиров к АКБ. Светодиодные индикаторы и реле сигнализации:

Зеленый: включен, когда напряжение АКБ более 27,3 В
Оранжевый: включен при отклонении более 0,1 В
Красный: тревога (отклонение более 0, 2 В)
Реле сигнализации: нормально открытый контакт замыкается, когда включается красный светодиод. Контакт остается замкнутым до уменьшения отклонения до 0,14 В, или до снижения напряжения АКБ до 26,6 В. Сброс реле сигнализации осуществляется при помощи кнопки, подключенной к двум терминалам.

>

Из минусов слишком высокая цена, слабый ток балансировки всего 0,7А, и нет возможности настройки под свой тип АКБ. Есть более лучшие аналоги по приемлемой цене.

Устройство выравнивания заряда ЭЛНИ 2/12 на 2АКБ 12В

Нашёл так-же ещё вот такой балансир. Это уже явно активный балансир, явно превосходящий первый по току балансировки, у этого ток 5А в сравнении 0.7А у первого. Цена правда тоже не маленькая - 3600-3900 руб на разных сайтах.

Этот балансир постоянно отслеживает напряжение соединённых последовательно акб, и выравнивает напряжение переливая энергию между АКБ. И это он делает не только во время заряда, когда АКБ уже почти зарядились, а постоянно если есть дисбаланс. И ток балансировки здесь может достигать 5А, это значит что балансир может справляться даже с большим дисбалансом по ёмкости.

>

На этом на наших сайтах я не нашёл ничего оригинального, что бы не имелось на алиэкспресс. Есть конечно много балансиров, но все они куплены в китае и продаются у нас втридорого. Так зачем переплачивать если можно самим купить на алиэкспресс то что предлагают наши перекупщики.

Активный балансир для 12в АКБ

На алиэкспресс я нашёл вот такой балансир. Это активный балансир с максимальным током балансировки 10А. Он отслеживает напряжение на последовательно соединённых АКБ и выравнивает напряжение переливая энергию между АКБ с точностью 10mV. Каждый балансир ставится на свой аккумулятор, и балансиры соединяются между собой. Посмотреть описание и купить можно здесь Балансир 12V . Цена на момент написания статьи 1700 рублей, и это не дорого за такой мощный активный балансир.

>

Производитель этих балансиров выпускает несколько различных типов балансиров. В продаже есть балансиры на 2 вольта для отдельных свинцово-кислотных "банок". Также балансиры для литий-ионных АКБ на 3,6 и 4,2 вольта. И балансиры для аккумуляторов на 6 и 12 вольт. Все балвнсиры можно посмотреть здесь - Каталог балансиров 2/3.6/3.8/4.2/6/12 вольт

Балансир аккумуляторый на 24 вольта (12*2)

Так-же нашёл я ещё один популярный по заказам и дешовый балансир для аккмуляторов. Это балансир для двух АКБ по 12 вольт, можно ставить несколько если система на 48 вольт и выше. Ток балансировки до 5А что довольно неплохо. Единственное я так и не понял активный он или пассивный, но судя по размерам и отсутствию радиатора это активный балансир. Цена этого балансира 1760 рублей, посмотреть можно здесь - Двойной Балансир для 12в АКБ

>

Цена очень привлекательная, и ток балансировки очень приличный 5А, по-этому справится даже с болшой разницей по ёмкости и напряжению между АКБ в системе.

Балансир для (12×4) 48 вольт АКБ

Вот ещё один отличный активный балансир для аккумуляторов, он сделан в виде блока на 48 вольт, то-есть для четырёх последовательно соединённых АКБ. Ток балансировки до 10 ампер, и это просто отлично, позволит ликвидировать даже большой дисбаланс. Посмотреть полное описание и купить его моно по этой сылке на алиэкспресс - Балансир для 48в АКБ (12×4) , цена 3960 рублей.

>

Пока это всё что мне удалось найти, хотя конечно не всё, но это основное. Есть контроллеры для солнечных батарей со встроенными балансирами, но это очень дорого пока. Есть зарядные устройства с балансировкой, но здесь они неуместны. Есть всякие электронные схемы, которые можно заставить работать как балансиры, есть варианты самостоятельного изготовления балансиров.

ВАЗ-2108