Лодки на воздушной подушке. Катер-амфибия своими руками

Высокие скоростные характеристики и амфибийные возможности аппаратов, передвигающихся на воздушной подушке (АВП), а также сравнительная простота их конструкций привлекают внимание конструкторов-любителей. В последние годы появилось немало небольших АВП, построенных самостоятельно и используемых для спорта, туризма или хозяйственных разъездов.

В некоторых странах, например в Великобритании, США и Канаде, налажено серийное промышленное производство малых АВП; предлагаются готовые аппараты либо наборы деталей для самостоятельной сборки.

Типичный спортивный АВП компактен, прост по конструкции, имеет независимые друг от друга системы подъема и движения, легко передвигается как над землей, так и над водой. Это преимущественно одноместные аппараты с карбюраторными мотоциклетными или легкими автомобильными двигателями воздушного охлаждения.

Туристские АВП более сложны по конструкции. Обычно они двух- или четырехместные, предназначены для сравнительно длительных путешествий и соответственно имеют багажники, топливные баки большой емкости, приспособления для защиты пассажиров от непогоды.


Для хозяйственных целей используются небольшие платформы, приспособленные для транспортировки преимущественно сельскохозяйственных грузов по пересеченной и болотистой местности.

Основные характеристики

Любительские АВП характеризуются главными размерениями, массой, диаметром нагнетателя и воздушного винта, расстоянием от центра массы АВП до центра его аэродинамического сопротивления.

В табл. 1 сопоставляются важнейшие технические данные наиболее популярных английских любительских АВП. Таблица позволяет ориентироваться в широком диапазоне значений отдельных параметров и использовать их для сравнительного анализа с собственными проектами.


Самые легкие АВП имеют массу около 100 кг, самые тяжелые - более 1000 кг. Естественно, чем меньше масса аппарата, тем меньшая требуется мощность двигателя для его движения или тем более высокие эксплуатационные качества могут быть достигнуты при той же потребляемой мощности.

Ниже приводятся наиболее характерные данные о массе отдельных узлов, составляющих общую массу любительского АВП: карбюраторный двигатель с воздушным охлаждением - 20-70 кг; осевой нагнетатель. (насос) - 15 кг, центробежный насос - 20 кг; воздушный винт - 6-8 кг; рама мотора - 5-8 кг; трансмиссия - 5-8 кг; кольцо-насадка воздушного винта - 3-5 кг; органы управления - 5-7 кг; корпус - 50-80 кг; топливные баки и бензопроводы - 5-8 кг; сиденье - 5 кг.

Общая грузоподъемность определяется расчетом в зависимости от числа пассажиров, заданного количества перевозимого груза, запасов топлива и масла, необходимых для обеспечения требуемой дальности плавания.

Параллельно с расчетом массы АВП требуется точный расчет положения центра тяжести, поскольку от этого зависят ходовые качества, остойчивость и управляемость аппарата. Главным условием является то, чтобы равнодействующая сил поддержания воздушной подушки проходила через общий центр тяжести (ЦТ) аппарата. При этом необходимо учитывать, что все массы, изменяющие свою величину в процессе эксплуатации (такие, например, как горючее, пассажиры, грузы), должны быть размещены вблизи от ЦТ аппарата, чтобы не вызывать его перемещения.

Центр тяжести аппарата определяется расчетом по чертежу боковой проекции аппарата, где наносят центры тяжести отдельных агрегатов, узлов конструкции пассажиров и грузов (рис. 1). Зная массы G i и координаты (относительно осей координат) x i и y i их центров тяжести, можно определить положение ЦТ всего аппарата по формулам:


Проектируемый любительский АВП должен соответствовать определенным эксплуатационным, конструктивным и технологическим требованиям. Основой для создания проекта и конструкции нового типа АВП являются, прежде всего, исходные данные и технические условия, которые определяют тип аппарата, его назначение, полную массу, грузоподъемность, габариты, тип главной энергетической установки, ходовые характеристики и специфические особенности.

От туристских и спортивных АВП, как, впрочем, и от других типов любительских АВП, требуется простота изготовления, использование в конструкции легкодоступных материалов и агрегатов, а также полная безопасность эксплуатации.

Говоря о ходовых характеристиках, подразумевают высоту парения АВП и связанную с этим качеством способность преодоления препятствий, максимальную скорость и приемистость, а также длину тормозного пути, остойчивость, управляемость, дальность хода.

В конструкции АВП принципиальную роль играет форма корпуса (рис. 2), которая является компромиссом между:

  • а) круглыми в плане обводами, которые характеризуются наилучшими параметрами воздушной подушки в момент зависания на месте;
  • б) каплевидной формой обводов, которая предпочтительнее с точки зрения снижения аэродинамического сопротивления при движении;
  • в) заостренной в носу ("клювообразной") формой корпуса, оптимальной с гидродинамической точки зрения во время движения по взволнованной поверхности воды;
  • г) формой, оптимальной для эксплуатационных целей.
Соотношения между длиной и шириной корпусов любительских АВП варьируются в пределах L:В=1,5÷2,0.

Используя статистические данные по существующим конструкциям, которые соответствуют вновь создаваемому типу АВП, конструктор должен установить:

  • массу аппарата G, кг;
  • площадь воздушной подушки S, м 2 ;
  • длину, ширину и очертания корпуса в плане;
  • мощность двигателя подъемной системы N в.п. , кВт;
  • мощность тягового двигателя N дв, КВТ.
Эти данные позволяют вычислить удельные показатели:
  • давление в воздушной подушке P в.п. = G:S;
  • удельную мощность подъемной системы q в.п. = G:N в.п. .
  • удельную мощность тягового двигателя q дв = G:N дв, а также начать разработку конфигурации АВП.

Принцип создания воздушной подушки, нагнетатели

Наиболее часто при постройке любительских АВП используются две схемы образования воздушной подушки: камерная и сопловая.

В камерной схеме, используемой чаще всего в простых конструкциях, объемный расход воздуха, проходящего через воздушный тракт аппарата, равен объемному расходу воздуха нагнетателя


где:
F - площадь периметра зазора между опорной поверхностью и нижней кромкой корпуса аппарата, через который воздух выходит из-под аппарата, м 2 ; ее можно определить как произведение периметра ограждения воздушной подушки Р на величину зазора h e между ограждением и опорной поверхностью; обычно h 2 = 0,7÷0,8h, где h - высота парения аппарата, м;

υ - скорость истечения воздуха из-под аппарата; с достаточной точностью ее можно рассчитать по формуле:


где Р в.п. - давление в воздушной подушке, Па; g - ускорение свободного падения, м/с 2 ; у - плотность воздуха, кг/м 3 .

Мощность, необходимая для создания воздушной подушки в камерной схеме, определяется по приближенной формуле:


где Р в.п. - давление за нагнетателем (в ресивере), Па; η н - коэффициент полезного действия нагнетателя.

Давление в воздушной подушке и расход воздуха - основные параметры воздушной подушки. Их величины зависят прежде всего от размеров аппарата, т. е. от массы и несущей поверхности, от высоты парения, скорости движения, способа создания воздушной подушки и сопротивления в воздушном тракте.

Наиболее экономичные аппараты на воздушной подушке - это АВП больших размеров или больших несущих поверхностей, при которых минимальное давление в подушке позволяет получить достаточно большую грузоподъемность. Однако самостоятельная постройка аппарата больших размеров связана с трудностями транспортировки и хранения, а также ограничивается финансовыми возможностями конструктора-любителя. При уменьшении размеров АВП требуется значительное повышение давления в воздушной подушке и, соответственно, увеличение потребляемой мощности.

От давления в воздушной подушке и скорости истечения воздуха из-под аппарата зависят, в свою очередь, негативные явления: забрызгивание во время движения над водой и запыление - при движении над песчаной поверхностью либо сыпучим снегом.

По-видимому, удачная конструкция АВП является в известном смысле компромиссом между описанными выше противоречивыми зависимостями.

Чтобы снизить затраты мощности на прохождение воздуха через воздушный канал от нагнетателя в полость подушки, он должен обладать минимальным аэродинамическим сопротивлением (рис. 3). Потерн мощности, неизбежные при прохождении воздуха по каналам воздушного тракта, бывают двоякого рода: потерн на движение воздуха в прямых каналах постоянного сечения и местные потери - при расширении и изгибах каналов.

В воздушном тракте небольших любительских АВП потери на движение воздушных потоков вдоль прямых каналов постоянного сечения относительно невелики вследствие незначительной протяженности этих каналов, а также тщательности обработки их поверхности. Эти потери можно оценить по формуле:


где: λ - коэффициент потерь давления на длину канала, рассчитанный по графику, представленному на рис. 4, в зависимости от числа Рейнольдса Re=(υ·d):v, υ - скорость прохождения воздуха в канале, м/с; l - длина канала, м; d - диаметр канала, м (если канал имеет отличное от круглого сечение, то d - диаметр эквивалентного по площади поперечного сечения цилиндрического канала); v - коэффициент кинематической вязкости воздуха, м 2 /с.

Местные потери мощности, связанные с сильным увеличением либо уменьшением сечения каналов и значительными изменениями направления потока воздуха, а также потери на всасывание воздуха в нагнетатель, сопла и к рулям составляют основные затраты мощности нагнетателя.


Здесь ζ м - коэффициент местных потерь, зависящий от числа Рейнольдса, которое определяется геометрическими параметрами источника потерь и скоростью прохождения воздуха (рис. 5-8).

Нагнетатель в АВП должен создавать определенное давление воздуха в воздушной подушке с учетом затрат мощности на преодоление сопротивления каналов воздушному потоку. В некоторых случаях часть воздушного потока используется и для образования горизонтальной тяги аппарата с целью обеспечения движения.

Полное давление, создаваемое нагнетателем, складывается из статического и динамического давлений:


В зависимости от типа АВП, площади воздушной подушки, высоты подъема аппарата и величины потерь составляющие компоненты p sυ и p dυ варьируются. Это определяет выбор типа и производительность нагнетателей.

В камерной схеме воздушной подушки статическое давление p sυ , необходимое для создания подъемной силы, можно приравнять к статическому давлению за нагнетателем, мощность которого определяется по формуле, приведенной выше.

При расчете потребной мощности нагнетателя АВП с гибким ограждением воздушной подушки (сопловая схема) статическое давление за нагнетателем можно рассчитать по приближенной формуле:


где: Р в.п. - давление в воздушной подушке под днищем аппарата, кг/м 2 ; kp - коэффициент перепада давления между воздушной подушкой и каналами (ресивером), равный k p =Р р:Р в.п. (Р р - давление в воздушных каналах за нагнетателем). Величина k p колеблется в пределах 1,25÷1,5.

Объемный расход воздуха нагнетателя можно рассчитать по формуле:


Регулировка производительности (расхода) нагнетателей АВП осуществляется чаще всего - путем изменения частоты вращения либо (реже) путем дросселирования потока воздуха в каналах при помощи находящихся в них поворотных заслонок.

После того как рассчитана необходимая мощность нагнетателя, необходимо найти для него двигатель; чаще всего любители используют мотоциклетные двигатели, если требуется мощность до 22 кВт. При этом в качестве расчетной мощности принимается 0,7-0,8 максимальной мощности двигателя, указываемой в паспорте мотоцикла. Необходимо предусмотреть интенсивное охлаждение двигателя и тщательную очистку воздуха, поступающего через карбюратор. Важно также получить установку с минимальной массой, которая складывается из массы двигателя, передачи между нагнетателем и двигателем, а также массы самого нагнетателя.

В зависимости от типа АВП применяются двигатели с рабочим объемом от 50 до 750 см 3 .

В любительских АВП применяются в равной степени как осевые нагнетатели, так и центробежные. Осевые нагнетатели предназначаются для небольших я несложных конструкций, центробежные - для АВП со значительным давлением в воздушной подушке.

Осевые нагнетатели, как правило, имеют четыре лопасти или больше (рис. 9). Их обычно изготовляют из дерева (четырехлопастные) или металла (нагнетатели с большим количеством лопастей). Если они из алюминиевых сплавов, то роторы можно отлить, а также применить сварку; можно сделать их сварной конструкции из стального листа. Диапазон давления, создаваемого осевыми четырехлопастными нагнетателями, составляет 600-800 Па (около 1000 Па с большим числом лопастей); КПД этих нагнетателей достигает 90%.

Центробежные нагнетатели делают сварной конструкции из металла или формуют из стеклопластика. Лопасти изготовляют гнутыми из тонкого листа либо с профилированным поперечным сечением. Центробежные нагнетатели создают давление до 3000 Па, а КПД их достигает 83%.

Выбор тягового комплекса

Движители, создающие горизонтальную тягу, можно разделить в основном на три типа: воздушный, водяной и колесный (рис. 10).

Под воздушным движителем понимается воздушный винт авиационного типа в кольце-насадке или без него, осевой или центробежный нагнетатель, а также воздушно-реактивный движитель. В простейших конструкциях горизонтальную тягу иногда можно создать с помощью наклона АВП и использования появляющейся при этом горизонтальной составляющей силы воздушного потока, истекающего из воздушной подушки. Воздушный движитель удобен для амфибийных аппаратов, не имеющих контакта с опорной поверхностью.

Если речь идет об АВП, передвигающихся только над поверхностью воды, то можно применить гребной винт или водометный движитель. По сравнению с воздушными эти движители позволяют получить значительно большую тягу на каждый киловатт затраченной мощности.

Ориентировочное значение тяги, развиваемой различными движителями, можно оценить по данным, приведенным на рис. 11.

При выборе элементов воздушного винта следует учитывать все виды сопротивления, возникающие в процессе движения АВП. Аэродинамическое сопротивление рассчитывается по формуле


Сопротивление воды, обусловленное образованием волн при движении АВП по воде, можно вычислить по формуле


где:

V - скорость движения АВП, м/с; G - масса АВП, кг; L - длина воздушной подушки, м; ρ - плотность воды, кг·с 2 /м 4 (при температуре морской воды +4°С равна 104, речной - 102);

С х - коэффициент аэродинамического сопротивления, зависящий от формы аппарата; определяется продувкой моделей АВП в аэродинамических трубах. Приближенно можно принять C x =0,3÷0,5;

S - площадь поперечного сечения АВП - его проекции на плоскость, перпендикулярную направлению движения, м 2 ;

Е - коэффициент волнового сопротивления, зависящий от скорости АВП (числа Фруда Fr=V:√ g·L) и соотношения размерений воздушной подушки L:B (рис. 12).

В качестве примера в табл. 2 приведен расчет сопротивления в зависимости от скорости движения для аппарата длиной L=2,83 м и В=1,41 м.


Зная сопротивление движению аппарата, можно вычислить мощность двигателя, необходимую для обеспечения его движения с заданной скоростью (в данном примере 120 км/ч), принимая КПД воздушного винта η р равным 0,6, а КПД передачи от двигателя на винт η п =0,9:
В качестве воздушного движителя для любительских АВП чаще всего применяется двухлопастной винт (рис. 13) .

Заготовка для такого винта может быть склеена из фанерных, ясеневых или сосновых пластин. Кромка, а также концы лопастей, которые подвергаются механическому воздействию твердых частиц или песка, всасываемых вместе с потоком воздуха, защищаются оковкой из листовой латуни.

Используются также и четырехлопастные винты. Количество лопастей зависит от условий эксплуатации и назначения винта - для развития.большой скорости или создания значительной силы тяги в момент старта. Достаточную силу тяги может обеспечить и двухлопастной винт с широкими лопастями. Сила тяги, как правило, повышается, если воздушный винт работает в профилированном кольце-насадке.

Готовый винт перед креплением на валу двигателя должен быть отбалансирован, главным образом - статически. В противном случае при его вращении возникают вибрации, которые могут привести к повреждению всего аппарата. Балансировка с точностью до 1 г для любителей вполне достаточна. Кроме балансировки винта проверяют его биение относительно оси вращения.

Общая компоновка

Одной из основных задач конструктора является соединение всех агрегатов в одно функциональное целое. Проектируя аппарат, конструктор обязан в пределах корпуса предусмотреть место для экипажа, размещения агрегатов подъемной и движительной систем. Важно при этом использовать в качестве прототипа конструкции уже известных АВП. На рис. 14 и 15 представлены конструктивные схемы двух типовых АВП любительской постройки.

В большинстве АВП корпус представляет собой несущий элемент, единую конструкцию. На нем находятся агрегаты главной энергетической установки, воздушные каналы, приборы управления и кабина водителя. Кабины водителей размешаются в носовой или центральной части аппарата в зависимости от того, где находится нагнетатель - за кабиной или перед нею. Если АВП - многоместный, кабина находится обычно в средней части аппарата, что позволяет эксплуатировать его с разным количеством людей на борту без изменения центровки.

В небольших любительских АВП место водителя чаще всего открытое, защищенное спереди ветровым стеклом. В аппаратах более сложной конструкции (туристского типа) кабины закрыты куполом из прозрачного пластика. Для размещения необходимого снаряжения и запасов используются объемы, имеющиеся по бортам кабины и под креслами.

При воздушных двигателях управление АВП осуществляется с помощью либо рулей, размещенных в потоке воздуха за винтом, либо направляющих устройств, укрепленных в потоке воздуха, истекающего из воздушно-реактивного движителя. Управление аппаратом с места водителя может быть авиационного типа - с помощью рукояток или рычагов руля управления, либо как в автомобиле - рулевым колесом и педалями.

В любительских АВП применяются два основных вида топливных систем; с подачей топлива самотеком и с бензонасосом автомобильного или авиационного типа. Детали топливной системы, такие, как клапаны, фильтры, масляная система вместе с бачками (если применяется четырехтактный двигатель), маслорадиаторы, фильтры, система водяного охлаждения (если это двигатель с водяным охлаждением), - подбираются обычно из существующих авиационных или автомобильных детален.

Выхлопные газы от двигателя всегда выводятся в кормовую часть аппарата и никогда - в подушку. Чтобы уменьшить шум, возникающий при эксплуатации АВП, особенно вблизи населенных пунктов, используются глушители автомобильного типа.

В простейших конструкциях нижняя часть корпуса служит в качестве шасси. Роль шасси могут выполнять деревянные полозья (или полоз), принимающие на себя нагрузку при соприкосновении с поверхностью. В туристских АВП, отличающихся большей массой, чем спортивные, монтируются колесные шасси, которые облегчают перемещение АВП во время стоянок. Обычно используются два колеса, установленных по бортам либо вдоль продольной оси АВП. Колеса имеют контакт с поверхностью лишь после прекращения работы подъемной системы, когда АВП касается поверхности.

Материалы и технология изготовления

Для изготовления АВП деревянной конструкции применяют высококачественные сосновые пиломатериалы, подобные используемым в авиастроении, а также березовую фанеру, ясеневую, буковую и липовую древесину. Для склеивания дерева применяют водостойкий клей с высокими физико-механическими качествами.

Для гибких ограждений преимущественно используют технические ткани; они должны быть исключительно прочными, устойчивыми к атмосферному влиянию и влажности, а также к трению, В Польше чаще всего используют огнестойкую ткань, покрытую пластиковидным полихлорвинилом.

Важно выполнить правильно раскрой и, обеспечить тщательное соединение полотнищ между собой, а также крепление их к аппарату. Для крепления оболочки гибкого ограждения к корпусу применяют металлические планки, которые посредством болтов равномерно прижимают ткань к корпусу аппарата.

Конструируя форму гибкого ограждения воздушной подушки, не следует забывать о законе Паскаля, который гласит: давление воздуха распространяется во всех направлениях с одинаковой силой. Поэтому оболочка гибкого ограждения в надутом состоянии должна иметь форму цилиндра или сферы либо их сочетания.

Конструкция и прочность корпуса

На корпус АВП передаются силы от груза, перевозимого аппаратом, вес механизмов силовой установки и т. д., а также действуют нагрузки от внешних сил, ударов днища о волну и от давления в воздушной подушке. Несущая конструкция корпуса любительского АВП чаще всего представляет собой плоский понтон, который поддерживается давлением в воздушной подушке, а в режиме плавания обеспечивает плавучесть корпуса. На корпус действуют сосредоточенные силы, изгибающие и крутящие моменты от двигателей (рис. 16), а также гироскопические моменты от вращающихся частей механизмов, возникающие при маневрировании АВП.

Наибольшее распространение получили два конструктивных типа корпусов любительских АВП (или их комбинации):

  • ферменной конструкции, когда общая прочность корпуса обеспечивается с помощью плоских или пространственных ферм, а обшивка предназначается только для удержания воздуха в воздушном тракте и создания объемов плавучести;
  • с несущей обшивкой, когда общая прочность корпуса обеспечивается наружной обшивкой, работающей совместно с продольным и поперечным набором.
Примером АВП с комбинированной схемой конструкции корпуса является спортивный аппарат "Калибан-3" (рис. 17), построенный любителями Англии и Канады. Центральный понтон, состоящий из продольного и поперечного набора с несущей обшивкой, обеспечивает общую прочность корпуса и плавучесть, а бортовые части образуют воздуховоды (бортовые ресиверы), которые выполнены с легкой обшивкой, закрепленной на поперечном наборе.

Конструкция кабины и ее остекления должна обеспечивать возможность быстрого выхода водителя и пассажиров из кабины, особенно в случае аварии или пожара. Расположение стекол должно обеспечивать водителю хороший обзор: линия наблюдения должна находиться в границах от 15° вниз до 45° вверх от горизонтальной линии; боковой обзор должен быть не менее 90° на каждый борт.

Передача мощности на винт и нагнетатель

Наиболее просты для любительского изготовления клиноременная и цепная передачи. Однако цепная передача используется только для привода воздушных винтов или нагнетателей, оси вращения которых расположены горизонтально, да и то лишь в том случае, если есть возможность подобрать соответствующие мотоциклетные звездочки, так как их изготовление довольно сложно.

В случае клиноременной передачи для обеспечения долговечности ремней диаметры шкивов следует выбирать максимальными, однако при этом окружная скорость ремней не должна превышать 25 м/с .

Конструкция подъемного комплекса и гибкого ограждения

Подъемный комплекс состоит из нагнетательного агрегата, воздушных каналов, ресивера и гибкого ограждения воздушной подушки (в сопловых схемах). Каналы, по которым воздух подается от нагнетателя в гибкое ограждение, должны быть спроектированы с учетом требований аэродинамики и обеспечивать минимальные потери давления.

Гибкие ограждения любительских АВП обычно имеют упрощенную форму и конструкцию. На рис. 18 показаны примеры конструктивных схем гибких ограждений и способ проверки формы гибкого ограждения после его монтажа на корпусе аппарата. Ограждения этого типа обладают хорошей эластичностью, а благодаря закругленной форме не цепляются за неровности опорной поверхности.

Расчет нагнетателей, как осевых, так и центробежных, довольно сложен и может быть выполнен только при использовании специальной литературы.

Рулевое устройство, как правило, состоит из рулевого колеса или педалей, системы рычагов (или тросиковой проводки), соединенных с вертикальным рулем направления, а иногда и с горизонтальным рулем - рулем высоты.

Орган управления может быть сделан в виде автомобильного или мотоциклетного руля. Учитывая, однако, специфику конструкции и эксплуатации АВП как летательного аппарата, чаще используют авиационную конструкцию органов управления в виде рычага или педалей. В простейшем виде (рис. 19) при наклонении рукоятки вбок движение передается посредством закрепленного на трубе рычага к элементам штуртросовой проводки и далее на руль направления. Движения рукоятки вперед и назад, возможные благодаря ее шарнирному закреплению, передаются через толкатель, проходящий внутри трубы, к проводке руля высоты.

При педальном управлении независимо от его схемы необходимо предусматривать возможность перемещения либо сиденья, либо педалей для регулировки в соответствии с индивидуальными особенностями водителя. Рычаги изготовляют чаще всего из дюралюминия, трубы передачи крепятся к корпусу с помощью кронштейнов. Движение рычагов ограничивается проемами вырезов в направляющих, укрепленных на бортах аппарата.

Пример конструкции руля направления в случае размещения его в потоке воздуха, отбрасываемого движителем, показан на рис. 20.

Рули направления могут быть либо полностью поворотными, либо состоять из двух частей - неповоротной (стабилизатора) и поворотной (пера руля) при различных процентных соотношениях хорд этих частей. Профили сечения руля любых типов должны быть симметричными. Стабилизатор руля обычно неподвижно закрепляют на корпусе; главным несущим элементом стабилизатора является лонжерон, к которому подвешивается на шарнирах перо руля. Рули высоты, очень редко встречающиеся в любительских АВП, конструируются по тем же принципам и иногда даже бывают в точности такими же, как и рули направления.

Конструктивные элементы, передающие движение от органов управления к рулям и дроссельным заслонкам двигателей, обычно состоят из рычагов, стержней, тросиков и т. п. С помощью стержней, как правило, передаются усилия в обоих направлениях, тогда как тросики работают только на тягу. Чаще всего на любительских АВП используют комбинированные системы - с тросиками и толкателями.

От редакции

Все более пристальным вниманием любителей водно-моторного спорта и туризма пользуются суда на воздушной подушке. При сравнительно небольших затратах мощности они позволяют достичь высоких скоростей; для них доступны мелеющие и труднопроходимые реки; судно на воздушной подушке может парить и над землей, и надо льдом.

Впервые с вопросами проектирования малых СВП мы знакомили читателей еще в 4 выпуске (1965 г.), поместив статью Ю. А. Будницкого «Парящие суда». В был опубликован краткий очерк развития зарубежных СВП, включающий и описание ряда спортивно-прогулочных современных 1- и 2-местных СВП. С опытом самостоятельной постройки такого аппарата рижанином О. О. Петерсонсом редакция знакомила в . Публикация об этой любительской конструкции вызвала особенно большой интерес у наших читателей. Многие из них захотели построить такую же амфибию и просили указать необходимую литературу.

В этом году издательство «Судостроение» выпускает книгу польского инженера Ежи Беня «Модели и любительские суда на воздушной подушке». В ней вы найдете изложение основ теории образования воздушной подушки и механики движения на ней. Автор приводит расчетные соотношения, которые необходимы при самостоятельном проектировании простейших СВП, знакомит с тенденциями и перспективами развития данного типа судов. В книге приведено много примеров конструкций любительских аппаратов на воздушной подушке (АВП), построенных в Великобритании, Канаде, США, Франции, Польше. Книга адресована широкому кругу любителей самостоятельной постройки судов, судомоделистам, водномоторникам. Текст ее богато иллюстрирован чертежами, рисунками и фотографиями.

В журнале публикуется сокращенный перевод главы из этой книги.

Четыре наиболее популярных зарубежных СВП

Американское СВП «Эйрскэт-240»

Двухместное спортивное СВП с поперечным симметричным расположением мест. Механическая установка - автомоб. дв. «Фольксваген» мощностью 38 кВт, приводящий во вращение осевой четырехлопастной нагнетатель и двухлопастной воздушный винт в кольце. Управление СВП по курсу осуществляется с помощью рычага, связанного с системой рулей, размещенных в потоке за воздушным винтом. Электрооборудование 12 В. Пуск двигателя - электростартерный. Размеры аппарата 4,4x1,98х1,42 м. Площадь воздушной подушки - 7,8 м 2 ; диаметр воздушного винта 1,16 м, полная масса - 463 кг, максимальная скорость на воде 64 км/ч.

Американское СВП фирмы «Скиммерс инкорпорейтед»

Своеобразное одноместное СВП-мотороллер. Конструкция корпуса основана на идее использования автомобильной камеры. Мотор двухцилиндровый мотоциклетный мощностью 4,4 кВт. Размеры аппарата 2,9х1,8х0,9 м. Площадь воздушной подушки - 4,0 м 2 ; полная масса - 181 кг. Максимальная скорость - 29 км/ч.

Английское СВП «Эйр Райдер»

Этот двухместный спортивный аппарат - одни из наиболее популярных У судостронтелей-любителей. Осевой нагнетатель приводится во вращение мотоцикл, дв. рабочим объемом 250 см 3 . Воздушный винт - двухлопастной, деревянный; работает от отдельного мотора мощностью 24 кВт. Электрооборудование напряжением 12 В с авиационным аккумулятором. Пуск двигателей - электростартерный. Аппарат имеет размеры 3,81х1,98х2,23 м; клиренс 0,03 м; подъем 0,077 м; площадь подушки 6,5 м 2 ; масса порожнем 181 кг. Развивает на воде скорость 57 км/ч, на суше - 80 км/ч; преодолевает уклоны до 15°.

В таблице 1. приведены данные одноместной модификации аппарата.

Английское СВП «Ховеркэт»

Легкое туристское судно на пять-шесть человек. Существуют две модификации: «МК-1» и «МК-2». Центробежный нагнетатель диаметром 1,1 м приводится во вращение от автомоб. дв. «Фольксваген» рабочим объемом 1584 см 3 и потребляет мощность 34 кВт при 3600 об/мин.

В модификации «МК-1» движение осуществляется при помощи воздушного винта диаметром 1,98 м, приводимого во вращение вторым таким же двигателем.

В модификации «МК-2» для горизонтальной тяги использован автомоб. дв. «Порше 912» объемом 1582 см 3 и мощностью 67 кВт. Управление аппаратом осуществляется с помощью аэродинамических рулей, помещенных в потоке за воздушным винтом. Электрооборудование напряжением 12 В. Размеры аппарата 8,28х3,93х2,23 м. Площадь воздушной подушки 32 м 2 , полная масса аппарата 2040 кг, скорость передвижения модификации «МК-1» - 47 км/ч, «МК-2» - 55 км/ч.

Примечания

1. Упрощенная методика подбора воздушного винта по известному значению сопротивления, частоте вращения и скорости поступательного движения приведена в .

2. Расчеты клиноременных и цепных передач можно выполнить, пользуясь общепринятыми в отечественном машиностроении нормами.

Качество дорожной сети в нашей стране оставляет желать лучшего. Строительство на некоторых направлениях нецелесообразно по экономическим причинам. С перемещением людей и грузов в таких местностях отлично справятся транспортные средства, работающие на иных физических принципах. Полноразмерные суда на своими руками в кустарных условиях не построить, а вот масштабные модели - вполне возможно.

Транспортные средства этого вида способны перемещаться по любому относительно ровному покрытию. Это могут быть и чистое поле, и водоем, и даже болото. Стоит заметить, что на таких непригодных для другого транспорта покрытиях СВП способно развивать достаточно высокую скорость. Основным недостатком такого транспорта является необходимость больших энергозатрат на создание воздушной подушки и, как следствие, большой расход топлива.

Физические принципы работы СВП

Высокая проходимость транспортных средств такого типа обеспечивается низким удельным давлением, которое оно оказывает на поверхность. Это объясняется довольно просто: площадь контакта транспортного средства равна или даже превышает площадь самого транспортного средства. В энциклопедических словарях СВП определяются как суда с динамически создаваемой опорной тягой.

Крупные и на воздушной подушке зависают над поверхностью на высоте от 100 до 150 мм. В специальном устройстве под корпусом создается воздуха. Машина отрывается от опоры и теряет с ней механический контакт, в результате чего сопротивление движению становится минимальным. Основные затраты энергии идут на поддержание воздушной подушки и разгон аппарата в горизонтальной плоскости.

Составление проекта: выбор рабочей схемы

Для изготовления действующего макета СВП необходимо выбрать эффективную для заданных условий конструкцию корпуса. Чертежи судов на воздушной подушке можно найти на специализированных ресурсах, где размещены патенты с подробным описанием разных схем и способов их реализации. Практика показывает, что одним из самых удачных вариантов для таких сред, как вода и твердый грунт, является камерный способ формирования воздушной подушки.

В нашей модели будет реализована классическая двухмоторная схема с одним нагнетающим силовым приводом и одним толкающим. Малоразмерные суда на воздушной подушке своими руками изготовленные, по сути, являются игрушками-копиями больших аппаратов. Однако они наглядно демонстрируют преимущества использования таких средств передвижения перед остальными.

Изготовление корпуса судна

При выборе материала для корпуса судна основными критериями являются простота в обработке и невысокий на воздушной подушке относятся к категории амфибийных, а значит, в случае его несанкционированной остановки не произойдет затопления. Корпус судна выпиливается из фанеры (толщиной 4 мм) по заранее подготовленному лекалу. Для выполнения этой операции используется лобзик.

Самодельное судно на воздушной подушке имеет надстройки, которые для снижения веса лучше сделать из пенополистирола. Для придания им большего внешнего сходства с оригиналом снаружи производится оклеивание деталей пеноплексом и окрашивание. Стекла кабины делаются их прозрачного пластика, а остальные детали вырезаются из полимеров и выгибаются из проволоки. Максимальная детализация - ключ к сходству с прототипом.

Выделка воздушной камеры

При изготовлении юбки используется плотная ткань из полимерного водонепроницаемого волокна. Раскрой осуществляется по чертежу. Если у вас нет опыта переноса эскизов на бумагу вручную, то их можно распечатать на широкоформатном принтере на плотной бумаге, а потом вырезать обычными ножницами. Подготовленные детали сшиваются между собой, швы должны быть двойными и плотными.

Суда на воздушной подушке, своими руками выполненные, до включения нагнетающего двигателя опираются корпусом на грунт. Юбка частично сминается и располагается под ним. Склеивание деталей производится водостойким клеем, стык закрывается корпусом надстройки. Такое соединение обеспечивает высокую надежность и позволяет сделать монтажные стыки незаметными. Из полимерных материалов выполняется и другие внешние детали: ограждение диффузора винта и тому подобное.

Силовая установка

В составе силовой установки присутствует два двигателя: нагнетающий и маршевый. В модели используются бесколлекторные электромоторы и двухлопастные винты. Дистанционное управление ими осуществляется при помощи специального регулятора. Источником питания для силовой установки являются два аккумулятора суммарной емкостью в 3000 mAh. Их заряда достаточно для получасового использования модели.

Самодельные суда на воздушной подушке управляются дистанционно по радиоканалу. Все компоненты системы - радиопередатчик, приемник, сервоприводы - заводского изготовления. Установка, подключение и тестирование их производится в соответствии с инструкцией. После включения питания выполняется пробный прогон двигателей с постепенным увеличением мощности до образования устойчивой воздушной подушки.

Управление моделью СВП

Суда на воздушной подушке, своими руками изготовленные, как уже отмечалось выше, имеют дистанционное управление по УКВ-каналу. На практике это выглядит следующим образом: в руках владельца находится радиопередатчик. Запуск двигателей выполняется нажатием на соответствующую кнопку. Управление скоростью и изменение направления движения производятся джойстиком. Машинка проста в маневрировании и достаточно точно выдерживает курс.

Испытания показали, что СВП уверенно перемещается по относительно ровной поверхности: по воде и по суше с одинаковой легкостью. Игрушка станет любимым развлечением для ребенка в возрасте от 7-8 лет с достаточно развитой мелкой моторикой пальцев рук.

Постройке транспортного средства, которое позволяло бы передвигаться как по суше, так и по воде, предшествовало знакомство с историей открытия и создания оригинальных амфибий - аппаратов на воздушной подушке (АВП), изучение принципиального их устройства, сравнение различных конструкций и схем.

С этой целью я посетил немало интернетовских сайтов энтузиастов и создателей АВП (в том числе и зарубежных), познакомился с некоторыми из них очно.

В конце концов, за прототип задуманного катера взял английский «Ховеркрафт» («парящее судно» - так в Великобритании называют АВП), построенный и испытанный тамошними энтузиастами. Наши наиболее интересные отечественные машины этого типа большей частью создавались для силовых ведомств, а в последние годы - для коммерческих целей, имели большие габариты, и потому мало подходили для любительского изготовления.

Мой аппарат на воздушной подушке (я его называю «Аэроджип») - трехместный: пилот и пассажиры располагаются по Т-образной схеме, как на трицикле: пилот впереди посередине, а пассажиры позади рядом, один около другого. Машина одномоторная, с разделяющимся воздушным потоком, для чего в его кольцевом канале немного ниже его центра установлена специальная панель.

Технические данные катера на воздушной подушке
Габаритные размеры, мм:
длина 3950
ширина 2400
высота 1380
Мощность двигателя, л. с. 31
Масса, кг 150
Грузоподъемность, кг 220
Запас топлива, л 12
Расход топлива, л/ч 6
Преодолеваемые препятствия:
подъем, град. 20
волна, м 0,5
Крейсерская скорость, км/ч:
по воде 50
по грунту 54
по льду 60

Состоит из трех основных частей: винтомоторной установки с трансмиссией, стеклопластикового корпуса и «юбки» - гибкого ограждения нижней части корпуса - так сказать, «наволочки» воздушной подушки.




1 - сегмент (плотная ткань); 2 - швартовная утка (3 шт.); 3 - ветровой козырек; 4 - бортовая планка крепления сегментов; 5 - ручка (2 шт.); 6 - ограждение воздушного винта; 7 - кольцевой канал; 8 - руль направления (2 шт.); 9 - рычаг управления рулями; 10 - лючок доступа к бензобаку и аккумулятору; 11 - сиденье пилота; 12 - пассажирский диван; 13 - кожух двигателя; 14 - двигатель; 15 - наружная оболочка; 16 - наполнитель (пенопласт); 17 - внутренняя оболочка; 18 - разделительная панель; 19 - воздушный винт; 20 - втулка воздушного винта; 21 - приводной зубчатый ремень; 22 - узел для крепления нижней части сегмента.
увеличить, 2238х1557, 464 КБ

Корпус катера на воздушной подушке

Он двойной: стеклопластиковый, состоит из внутренней и наружной оболочек.

Наружная оболочка имеет довольно простую конфигурацию - это всего лишь наклонные (около 50° к горизонтали) борта без днища - плоские почти по всей ширине и слегка выгнутые в верхней ей части. Носовая часть - скругленная, а задняя имеет вид наклонного транца. В верхней части по периметру наружной оболочки вырезаны продолговатые отверстия-пазы, а внизу снаружи закреплен в рым-болтах охватывающий оболочку трос для крепления к нему нижних частей сегментов.

Внутренняя оболочка по конфигурации посложнее, чем наружная, поскольку она имеет практически все элементы маломерного судна (скажем, шлюпки или лодки): борта, днище, выгнутые планшири, небольшую палубу в носу (нет только верхней части транца в корме), - при этом выполненные, как одна деталь. К тому же по середине кокпита вдоль него к днищу приклеен еще отдельно отформованный туннель с банкой под сиденье водителя, В нем размещаются топливный бак и аккумулятор, а также проложен трос «газа» и трос управления рулями.

В кормовой части внутренней оболочки устроен своеобразный ют, приподнятый и открытый спереди. Он служит основанием кольцевого канала для воздушною винта, а его палуба-перемычка - разделителем воздушного потока, часть которого (поддерживающий поток) направляется в отверстие шахты, а другая часть - для создания пропульсивной силы тяги.

Все элементы корпуса: внутренняя и наружная оболочки, туннель и кольцевой канал - выклеивались по матрицам из стекломата толщиной около 2 мм на полиэфирной смоле. Конечно, эти смолы уступают винилэфирным и эпоксидным по адгезии, уровню фильтрации, усадке, а также выделению вредных веществ при высыхании, но имеют неоспоримое преимущество в цене - они значительно дешевле, что немаловажно. Для тех, кто намеревается использовать такие смолы, напомню, что помещение, где проводятся работы, должно иметь хорошую вентиляцию и температуру не менее 22°С.

Матрицы изготавливались заранее по мастер-модели из таких же стекломатов на той же полиэфирной смоле, только толщина их стенок была побольше и составляла 7-8 мм (у оболочек корпуса - около 4 мм). Перед выклейкой элементов с рабочей поверхности матрицы были тщательно убраны все шероховатости и задиры, и она трижды покрывалась разбавленным в скипидаре воском и полировалась. После этого на поверхность распылителем (или валиком) был нанесен тонкий слой (до 0,5 мм) гелькоута (цветного лака) выбранного желтого цвета.

После его высыхания начался процесс выклейки оболочки по следующей технологии. Вначале с помощью валика восковая поверхность матрицы и сторона стекломата с более мелкими порами промазываются смолой, и затем мат укладывается на матрицу и прикатывается до полного удаления воздуха из-под слоя (при необходимости можно сделать и небольшую прорезь в мате). Таким же образом укладываются и последующие слои стекломатов до требуемой толщины (4-5 мм), с установкой, где необходимо, закладных деталей (металлических и деревянных). Излишние лоскуты по краям обрезаются при выклейке «помокрому».

После отвердения смолы оболочка легко снимается с матрицы и обрабатывается: обтачиваются края, вырезаются пазы, сверлятся отверстия.

Для обеспечения непотопляемости «Аэроджипа» к внутренней оболочке приклеивают куски пенопласта (например, мебельного), оставляя свободными лишь каналы для прохода воздуха по всему периметру. Куски пенопласта склеиваются между собой смолой, а к внутренней оболочке прикрепляются полосками стекломата, тоже смазанными смолой.

После изготовления по отдельности наружной и внутренней оболочек они состыковываются, скрепляются струбцинами и саморезами, а затем соединяются (склеиваются) по периметру полосками промазанного полиэфирной смолой того же стекломата шириной 40-50 мм, из которого были изготовлены сами оболочки. После этого корпус оставляют до полной полимеризации смолы.

Через сутки к верхнему стыку оболочек по периметру прикрепляют вытяжными заклепками дюралюминиевую полосу сечением 30x2 мм, установив ее вертикально (на ней фиксируются язычки сегментов). К нижней части дна приклеивают деревянные полозья размерами 1500x90x20 мм (длина х ширина х высота) на расстоянии 160 мм от края. Сверху на полозья наклеивается один слой стекломата. Точно так же, только изнутри оболочки, в кормовой части кокпита, устраивается основание из деревянной плиты под двигатель.

Стоит отметить, что по такой же технологии, по которой изготавливались наружная и внутренняя оболочки, выклеивались и более мелкие элементы: внутренняя и наружная оболочки диффузора, рули поворота, бензобак, кожух двигателя, ветроотбойник, тоннель и сиденье водителя. Тем же, кто только начинает работать со стеклопластиком, рекомендую подготавливать изготовление катера именно с этих мелких элементов. Полная масса стеклопластикового корпуса вместе с диффузором и рулями направления - около 80 кг.

Конечно, изготовление такого корпуса можно поручить и специалистам - фирмам, производящим стеклопластиковые лодки и катера. Благо и в России их немало, да и расходы будут соизмеримы. Однако в процессе самостоятельного изготовления удастся получить необходимые опыт и возможность в дальнейшем самому моделировать и создавать различные элементы и конструкции из стеклопластика.

Винтомоторная установка катера на воздушной подушке

Она включает в себя двигатель, воздушный винт и трансмиссию, передающую от первого ко второму крутящий момент.

Двигатель использован BRIGGS & STATTION, выпускающийся в Японии по американской лицензии: 2-цилиндровый, V-образный, четырехтактный, мощностью 31 л. с. при 3600 оборотах в минуту. Его гарантированный моторесурс составляет 600 тыс. часов. Запуск осуществляется электростартером, от аккумулятора, а работа свечей зажигания - от магнето.

Двигатель установлен на днище корпуса «Аэроджипа», а ось ступицы пропеллера закреплена с обоих концов на кронштейнах по центру диффузора, приподнятого над корпусом. Передача крутящего момента с выходного вала двигателя на ступицу осуществляется зубчатым ремнем. Ведомый и ведущий шкивы, как и ремень, - зубчатые.

Хотя масса двигателя не столь уж велика (около 56 кг), но расположение его на днище значительно понижает центр тяжести катера, что положительно сказывается на устойчивости и маневренности машины, особенно такой - «воздухоплавающей».

Выхлоп отработавших газов выведен в нижний воздушный поток.

Вместо установленного японского можно использовать и подходящие отечественные двигатели, - например, от снегоходов «Буран», «Рысь» и другие. Кстати, для одно- или двухместного АВП вполне подойдут двигатели мощностью поменьше - около 22 л. с.

Воздушный винт - шестилопастный, с фиксированным шагом (устанавливаемым на суше углом атаки) лопастей.



1 - стенки; 2 - крышка с язычком.

К неотъемлемой части винтомоторной установки следует отнести и кольцевой канал воздушного винта, хотя его основание (нижний сектор) выполнено заодно с внутренней оболочкой корпуса. Кольцевой канал, как и корпус - тоже составной, склеен из наружной и внутренней обечаек. Как раз в том месте, где нижний сектор его стыкуется с верхним, устроена стеклопластиковая разделительная панель: она разделяет воздушный поток, создаваемый пропеллером (а стенки нижнего сектора, наоборот, соединяет по хорде).

Двигатель, расположенный у транца в кокпите (за спинкой сиденья пассажиров), закрыт сверху стеклопластиковым капотом, а воздушный винт, кроме диффузора, - еще и проволочной решеткой спереди.

Мягкое эластичное ограждение катера на воздушной подушке (юбка) состоит из отдельных, но одинаковых сегментов, выкроенных и сшитых из плотной легкой ткани. Желательно, чтобы ткань была водоотталкивающей, не твердела на морозе и не пропускала воздух. Я использовал материал Vinyplan финского производства, но вполне подойдет отечественная ткань типа перкаль. Выкройка сегмента несложная, и сшить его можно даже вручную.

Крепится каждый сегмент к корпусу следующим образом. Язычок накидывается на бортовую вертикальную планку, с нахлестом в 1,5 см; на него - язычок соседнего сегмента, и оба они в месте нахлеста закрепляются на планке специальным зажимом типа «крокодильчик», только без зубьев. И так по всему периметру «Аэроджипа». Для надежности можно еще поставить зажим и по середине язычка. Два же нижних угла сегмента с помощью капроновых хомутиков подвешиваются свободно на тросе, обхватывающем нижнюю часть наружной оболочки корпуса.

Такая составная конструкция юбки позволяет без проблем заменять вышедший из строя сегмент, на что потребуется 5-10 минут. К месту будет сказать, что конструкция оказывается работоспособной при выходе из строя до 7% сегментов. Всего же их размещается на юбке до 60 штук.

Принцип движения катера на воздушной подушке следующий. После запуска двигателя и его работы на холостом ходу аппарат остается на месте. При увеличении числа оборотов воздушный винт начинает гнать более мощный поток воздуха. Часть его (большая) создает пропульсивную силу и обеспечивает катеру движение вперед. Другая же часть потока уходит под разделительную панель в бортовые воздуховоды корпуса (свободное пространство между оболочками до самой носовой части), и далее через отверстия-пазы в наружной оболочке равномерно поступает в сегменты. Этот поток одновременно с началом движения создает воздушную подушку под днищем, приподнимая аппарат над подстилающей поверхностью (будь то грунт, снег или вода) на несколько сантиметров.

Поворот «Аэроджипа» осуществляется двумя рулями направления, отклоняющими «поступательный» поток воздуха в сторону. Управление рулями осуществляется от двуплечего рычага рулевой колонки мотоциклетного типа, через боуденовский трос, идущий по правому борту между оболочками к одному из рулей. Другой руль соединен с первым жесткой тягой.

На левой рукоятке двуплечего рычага закреплена и манетка управления дроссельной заслонкой карбюратора (аналог ручки газа).



Для эксплуатации катера на воздушной подушке его необходимо зарегистрировать в местной государственной инспекции по маломерным судам (ГИМС) и получить судовой билет. Для получения же удостоверения на право управления катером надо пройти еще и курс обучения по управлению .

Однако и на этих курсах пока еще далеко не везде есть инструкторы по пилотированию аппаратов на воздушной подушке. Поэтому каждому пилоту приходится осваивать управление АВП самостоятельно, буквально по крупицам набирая соответствующий опыт.

Одной из самых серьезных и труднорешаемых проблем для жителей сельской местности являются дороги, особенно в весеннее время в половодье. Идеальной альтернативой любым транспортным средствам в таких условиях становятся вездеходы на воздушной подушке.

Что из себя представляет подобный транспорт?

Судно на представляет собой особое средство передвижения, в основе динамики которого лежит нагнетаемый под днищем поток воздуха, что позволяет ему передвигаться по любой поверхности - как жидкой, так и твердой.

Главным преимуществом такого транспорта является его высокая скорость. Кроме того, его навигационный период не ограничивается условиями окружающей среды - передвигаться на таких вездеходах можно как зимой, так и летом. Еще одним плюсом можно назвать возможность преодоления препятствий не более метра в высоту.

К минусам же относят небольшое количество пассажиров, которых способны перевозить вездеходы на воздушной подушке, и достаточно высокий расход топлива. Объясняется это повышенной мощностью двигателя, направленной на создание потока воздуха под днищем. Находящиеся в подушке мелкие частички могут стать причиной появления статического электричества.

Преимущества и недостатки вездеходов

Точно сказать, с чего стоит начинать выбор такой модели судна, достаточно сложно, поскольку все зависит от личных предпочтений будущего владельца и его планов на приобретаемый транспорт. Среди огромного количества характеристик и параметров у вездеходов на воздушной подушке имеются свои преимущества и недостатки, о многих из которых знают либо профессионалы, либо производители, но не обычные пользователи.

Одним из минусов таких судов является их нередкое упрямство: при температуре в -18 градусов они могут отказаться заводиться. Причиной этому становится конденсат в силовой установке. С целью повышения износостойкости и прочности вездеходы на воздушной подушке экономкласса имеют стальные вставки в днище, чего нет у их дорогостоящих аналогов. Достаточно мощный двигатель может не потянуть подъем транспорта на достаточно небольшой берег с уклоном в пару-тройку градусов.

Подобные нюансы обнаруживаются только во время эксплуатации вездехода. Чтобы избежать разочарования в транспорте, перед его покупкой желательно посоветоваться со специалистами и просмотреть всю доступную информацию.

Разновидности вездеходов на воздушной подушке

  • Младшие суда. Идеальный вариант для активного отдыха либо рыбалки на небольших водоемах. В большинстве случаев приобретают такие вездеходы те, кто живет достаточно далеко от цивилизации и до места их проживания добраться можно разве что только на вертолете. Передвижение небольших судов во многом походит на однако последние не способны на боковое скольжение на скорости порядка 40-50 км/ч.
  • Крупные суда. Такой транспорт можно брать уже на серьезную охоту или рыбалку. Грузоподъемность вездехода составляет от 500 до 2000 килограмм, вместимость - 6-12 пассажирских мест. Крупные суда практически полностью игнорируют бортовую волну, что позволяет использовать их даже на море. Приобрести такие вездеходы на воздушной подушке в нашей стране можно - на рынках реализуются транспорт как отечественного, так и иностранного производства.

Принцип работы

Функционирование воздушной подушки достаточно простое и во многом основывается на курс физики, знакомый со школьных времен. Принцип работы - поднятие катера над поверхностью земли и нивелирование силы трения. Данный процесс носит название «выход на подушку» и представляет собой временную характеристику. Для малых суден он занимает порядка 10-20 секунд, крупным требуется порядка полминуты. Промышленные вездеходы нагнетают воздух на протяжении нескольких минут, дабы увеличить давление до нужного уровня. После достижения необходимой отметки можно начинать движение.

На небольших судах, способных перевозить от 2 до 4 пассажиров, воздух в подушку нагнетается при помощи банальных воздухозаборников от тягового двигателя. Езда начинается практически сразу же после набора давления, что не всегда удобно, поскольку задняя передача у вездеходов младшего и среднего класса отсутствует. На более крупных вездеходах на 6-12 человек данный недостаток компенсируется вторым двигателем, контролирующим только давление воздуха в подушке.

на воздушной подушке

Сегодня можно встретить многих народных умельцев, которые самостоятельно создают подобную технику. Вездеход на воздушной подушке собирается на основе другого транспорта - к примеру, мотоцикла «Днепр». На двигатель устанавливается винт, нагнетающий в рабочем режиме воздух под днище, укрытое манжетой из кожзаменителя, устойчивого к воздействию отрицательных температур. Тот же мотор осуществляет и движение судна вперед.

Подобный вездеход на воздушной подушке своими руками создается с неплохими техническими характеристиками - к примеру, скорость его передвижения составляет порядка 70 км/ч. По сути, такой транспорт является наиболее выгодным для самостоятельного изготовления, поскольку не требует создания сложных чертежей и ходовой части, отличаясь при этом максимальным уровнем проходимости.

Вездеходы на воздушной подушке «Арктика»

Одной из разработок российских ученых из Омска является амфибийная грузовая платформа под названием «Арктика», которая была поставлена на вооружение армии РФ.

Амфибийное отечественное судно обладает следующими преимуществами:

  • Полная вездеходность - транспорт проходит по поверхности любого рельефа.
  • Может эксплуатироваться в любую погоду и любое время года.
  • Большая грузоподъемность и внушительный запас хода.
  • Безопасность и надежность, обеспеченная особенностями конструкции.
  • По сравнению с другими видами транспорта отличается экономичностью.
  • Экологически безопасна для окружающей среды, что подтверждено соответствующими сертификатами.

«Арктика» представляет собой судно на воздушной подушке, способное передвигаться по поверхности как воды, так и суши. Основным ее отличием от аналогичного транспорта, способного только временно находиться на земле, является возможность эксплуатации как на болотистых, заснеженных и обледенелых участках, так и на различных водоемах.

Катер на воздушной подушке (Landing Craft Air Cushion, LCAC) является высокоскоростным средством высадки десанта с больших десантных кораблей-доков. Он способен перевозить около 68-ми тонн полезной нагрузки (до 75 тонн в перегруженном состоянии). Катер используется для транспортировки систем вооружения, оборудования, грузов и личного состава с корабля на берег или вдоль береговой черты. Основным преимуществом десантных катеров на воздушной подушке является то, что LCAC способны перемещаться через болота и другие прибрежные препятствия, с большой скоростью перевозя при этом тяжелые грузы, например, такие, как танк Абрамс M-1, и может быть оснащен для перевозки личного состава в количестве до 180 человек. LCAC способен выполнять поставленную задачу независимо от глубины воды, подводных препятствий, отмелей или неблагоприятных приливов.

Он способен перемещаться на воздушной подушке, несмотря на препятствия высотой до полутора метров и независимо от местности или топографии, в том числе илистых, песчаных дюн, канав, болот, берегов рек, мокрого снега или скользких и обледенелых береговых линий. Оборудование, такое как грузовики и гусеничная техника может быть выгружено своим ходом через носовую и кормовую рампы, сократив тем самым критически важное время выгрузки. Таким образом, LCAC способен высадить войска на 70 процентов береговой линии в мире, по сравнению с лишь 17-ю процентами для обычных десантных кораблей.

LCAC были разработаны с целью удовлетворить потребность в транспортных средствах на воздушной подушке, способных доставлять войска, артиллерию, боевую технику, танки и другие основные элементы боевой техники и техники поддержки на неподготовленный берег. Эти катера на воздушной подушке основаны на специально изготовленном прототипе, который прошел всеобъемлящие испытания ВМФ США в период с 1977-го по 1981-й год. 29-го июня 1987-го года LCAC был утвержден к серийному производству. В 1989-м году было осуществлено финансирование сорока восьми десантных катеров на воздушной подушке. В 1990-м году было выделено $219.3 миллионов на постройку ещё девяти катеров, в 1991-м были полностью профинансированы ещё 12 LCAC. В 1992-м году были профинансированы 24 катера. По состоянию на 2001-й год ВМФ США был поставлен 91 LCAC. Катера производились на Textron Marine and Land Systems/Avondale Gulfport Marine. Судостроительная компания Lockheed была выбрана на конкурсной основе в качестве второго потенциального производителя. Катера LCAC 1-12, 15-17, 19, 20, 22-26, 28-30, 37-57, 61-91 были построены Textron Marine and Land Systems; 13, 14, 18, 21, 27, 31-33, 34-36, 58-60 Avondale Gulfport Marine.

Испытания LCAC были проведены в Панама-Сити, штат Флорида. Впоследствии LCAC был испытан в Калифорнии, Австралии и в арктических водах. Испытания на Аляске марта 1992 включали оценку оперативной эффективности LCAC в арктических условиях. В ходе испытаний выяснилось, что LCAC оказались мало эффективными для проведения операций Арктике и даже применение специального комплекта для холодной погоды не способен изменить ситуацию. Испытания также показали, что при низких температурах мощность двигателя увеличивается до предела возможностей коробки передач, но обледенение и состояние моря нейтрализуют это преимущество. С тех пор LCAC были использованы в двух учениях в Арктике, одно из которых включало в себя операции при температуре в минус 10°С и сложных погодных условиях. На основе этих учений было принято решение об отсутствии необходимости дальнейшей опытной эксплуатации. LCAC продемонстрировали способность передвигаться по тонкому льду и открытой воде в довольно спокойном море. Расстояние пройденное за выход варьировались от 4-х до 16-и км в одну сторону. Обледенение, возникающее при определенных условиях, требовало периодического прерывания миссии для удаления льда. При испытаниях в Арктике использовалось топливо JP-5, облегчающее проблемы с засорением фильтров. Кроме того, LCAC принимал участие в ряде учений по тралению, где показал себя как потенциально эффективный тральщик на мелководье.

Впервые LCAC был развернут в 1987-м году, когда десантные катера с бортовыми номерами 02, 03 и 04 были приняты на борт корабля USS Germantown (LSD-42). В июле 1987-го года LCAC 04 преодолел Бакнер-Бей на Окинаве и прозвел первую высадку LCAC на территории иностранного государства. Крупнейшее развертывание LCAC состоялось в январе 1991-го года, когда четыре отряда из одиннадцати катеров заступили на службу в Персидском заливе для поддержки операции "Буря в пустыне".

Пользователи десантных катеров на воздушной подушке отмечают некоторое сходство между LCAC и самолетом. "Пилот" катера располагается в "кабине", надев радиогарнитуру. Он получает указания с пункта управления воздушным движением расположенным рядом с кормовыми воротами корабля-дока. Во время движения экипаж испытывает те же ощущения, что и на самолете при высокой турбулентности. Пилот управляет Y-образным штурвалом, его ноги находятся на педалях управления, и он "летит как шайба в аэрохоккее". LCAC также похож на вертолет, он обладает шестью измерениями движения.

С такой дорогой и опасной по своей природе машиной, как LCAC, здравое мышление и принятие правильных решений играют ключевую роль. Обеспокоенность по поводу стоимости обучения, прогнозы на увеличение числа LCAC и их экипажей, а также высокая текучесть кадров в учебных подразделениях привели флот к осознанию важности разработки более точных методов отбора кандидатов. Таким образом, текучесть операторов и инженеров сократилась с начального уровня в 40% в 1988-ом году до 10-15% в настоящее время.

LCAC прошел успешный боевой опыт в Сомали, Бангладеш, Либерии, Гаити и Кувейте. Он также оказал неоценимую помощь во время ликвидации последствий стихийных бедствий, включая цунами и ураганы.

Тринадцать лет назад ВМС США приняли решение модернизировать свои десантные катера на воздушной подушке и продлить срок их эксплуатации с 20 до 30 лет. Реальная работа началась в 2005-ом году, и на сегодняшний день 30 десантных судов на воздушной подушке было модернизировано, либо они находятся в самом её разгаре (семь LCAC сейчас проходят этот процесс). Сумма модернизации составляет порядка $9 миллиона за каждый. Еще 72 катера находятся в эксплуатации, десять состоят в резерве (в качестве замены), и два используются для исследований и разработки. Весь процесс займет более десяти лет.

В процессе модернизации заменяется двигатель (в тех случаях, где возможно избежать замены, он подвергается капитальному ремонту), заменяются элементы конструкции поврежденные коррозией, и устанавливается новая электроника и другое вспомогательное оборудование.

Процессу модернизации подверглась система "C4N" (командование, управление, связь, компьютеры и навигация), заменены радары LN-66 на более современные и более мощные радары P-80. Новая электроника по открытой архитектуре на основе современного коммерческого оборудования обеспечивает наиболее быструю интеграцию точных навигационных систем, новых систем связи и т.п. Новые светодиодные экраны и светодиодная клавиатура потребляют меньше энергии, чем старые электронно-лучевые трубки и индикаторы лампочного типа, а также выделяют меньше тепла. В сочетании с новым кондиционером установленным в командной рубке это обеспечивает экипаж катера на воздушной подушке улучшенными условиями труда. Кроме этого, модернизацию прошли двигатели до конфигурации ETF-40B, обеспечивающую дополнительную мощность и подъемную силу (это особенно важно при температурах выше 40 градусов по Цельсию), снижение расхода топлива, снижение периодичности обслуживания.

Были заменены элементы корпуса подверженные коррозии на новые более прочные из некорозирующих материалов. Новая юбка воздушной подушки уменьшает лобовое сопротивление, увеличивает ходовые характеристики над водой и сушей, а также облегчает требования к техническому обслуживанию. После выше описанных процедур и покраски модернизированные катера выглядят как новые, но со значительными улучшениями. Модернизированные LCAC проще в обслуживании, более надежны и обладают лучшими характеристиками.

Шестого июля 2012-го года с компанией Textron Inc был заключен контракт на разработку замены приближающемуся к концу срока своей службы LCAC. Новый десантный катер SSC (Ship-to-Shore Connector) будет эволюционной заменой существующего парка катеров на воздушной подушке. SSC повысит тактические возможности загоризонтных средств десантирования. Они будут обладать повышенной надежностью и ремонтопригодностью, снизят совокупную стоимость эксплуатации, а также будут удовлетворить растущим требованиям к полезной нагрузке программы Морской экспедиционный батальон-2015. Программа подразумевает постройку в общей сложности 73 катеров (один для испытаний и тренировок и 72 для принятия на вооружение). Поставки запланированы на 2017-й финансовый год с принятием на вооружение в 2020-м финансовом году.

Тактико-технические характеристики:
Длина без подушки: 24.9 метра
Длина с подушкой: 28 метров
Ширина без подушки: 14.2 метра
Ширина с подушкой: 14.6 метра
Высота над поверхностью с подушкой: 5.8 метра
Высота над поверхностью без подушки: 7.8 метра
Высота подушки 1.5 метра
Водоизмещение: 88.6 тонн пустой; 173-185 тонн с полной нагрузкой
Энергетическая установка: четыре газовых турбины Avco-Lycoming TF-40B (2 для приведения в движение / 2 для создания подъемной силы) мощностью в 3955 лошадиных сил каждая
Пропеллеры: 2 четырех лопастных обратимых пропеллера с регулируемым шагом диаметром 3.58 метра для приведения в движение; 4 вентилятора диаметром в 1.6 метра, центробежные или смешанного потока для создания подъемной силы
Запас топлива: 19,000 литров
Средний расход топлива: 3,700 литров в час
Дальность плавания с полной нагрузкой: 200 миль при скорости в 40 узлов или 300 миль при скорости в 35 узлов (на 90 процентах топлива)
Скорость при полной нагрузке при состоянии моря в 2 балла: 50 узлов (92.6 км в час)
Скорость при полной нагрузке при состоянии моря в 3 балла: 35 узлов (64.8 км в час)
Скорость при полной нагрузке на суше: 25 узлов (46.3 км в час)
Грузоподъемность: 68 тонн (перегруженный 75 тонн)
Грузовая палуба: 20х8.2 метра, 168 кв.м
Экипаж: 5 человек
Размещение экипажа и десанта: по правому борту на верхней палубе командир, бортинженер, штурман, руководитель десантирования и командир десанта, на нижней палубе 7 десантников; по левому борту на верхней палубе специалист по загрузке, на нижней палубе механик и 16 десантников
Вооружение: 2 пулемета калибра калибра 12.7 мм; автоматический 40-мм гранатомет Mk-19 Mod3; пулемет М-60
Навигационное оборудование: навигационный радар Marconi LN 66 мощностью в 25 кВт, I band, спутниковая и инерционная системы навигации
Радиосвязь: 2 радиостанции УВЧ/УКВ, ВЧУ и портативные радиостанции

Доступность LCAC в сутки (из общего числа 54)
День первый - 52
День второй - 49
День третий - 46
День четвертый - 43
День пятый - 40
Рассчетное время работы: 16 часов в день
Время выхода при перевозке автотранспорта: 6 часов 8 мин
Время выхода при перевозке грузов: 8 часов 36 мин
Количество выходов в день при перевозке автотранспорта: 2.6
Итого: 104 выхода LCAC в день при использовании 40 LCAC
Количество выходов в день при перевозке грузов: 1.86
Итого: 74 выхода LCAC в день при использовании 40 LCAC
Десант: 145 морских пехотинцев или 180 гражданских
Автотранспорт за один выход: 12 HMMWV/ 4 БТР/ 2 плавающих БМП/ 1 танк M1A1/ 4 грузовика M923/ 2 5-тонных грузовика M923 и 2 гаубицы M198 и 2 HMMWV
Для десантирования пехотного полка необходимо:
269 ​​HMMWV - 23 выхода
10 5-тонных грузовиков - 3 выхода
Для десантирования танкового батальона:
58 M1A1 - 58 выходов
95 HMMWV - 8 выходов

8 бензовозов - 4 выхода
Для десантирования батальона БТР:
110 БТР - 28 выходов
29 HMMWV - 3 выхода
23 5-и тонных грузовиков - 6 выходов
8 бензовозов - 4 выхода

Возможность базирования на кораблях-доках:
Класс LSD 41 - 4 LCAC
Класс LSD 36 - 3 LCAC
Класс LHA 1 - 1 LCAC
Класс LHD 1 - 3 LCAC
Класс LPD 4 - 1 LCAC

Lada 110